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Abstract: This paper proposes a new line clipping algorithm against a 

convex polygon with 𝑂(𝑁) time complexity. The line segment is pruned 

against each extended edge of the polygon as the first step of the proposed 

algorithm. Then, the pruning process gives accurate outcomes for completely 

inside and partially inside line segments only. The algorithm was developed 

based on the observation that the endpoints of completely outside line 

segments coincide after the pruning process. Theoretical and experimental 

comparisons of the current algorithm against existing ones reveal that it is 

faster than the Cyrus Beck algorithm but is slower than ECB, Rappaport, and 

Skala algorithms. 

Keywords: Computer Graphics Programming, Line Clipping Algorithms, 

Computational Geometry, Convex Analysis, Time Complexity. 

1   Introduction 

Generally, any approach that extracts parts of a picture that are either inside 

or outside of a specified region of space is called a clipping algorithm. The clip 

window is defined as the region against which an object is clipped. There are 

many applications of clipping algorithms: extracting part of a defined scene for 

viewing; identifying visible surfaces in three-dimensional views; antialiasing 

line segments or object boundaries; creating objects using solid modeling 

procedures; displaying a multi-window environment; drawing and painting 

operations that allow parts of a picture to be selected for copying, moving, 
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erasing, or duplicating. The clip window can be a general polygon or it can even 

have curved boundaries depending on the application. The clipping algorithms 

are basically used for clipping the following primitive types: point clipping, line 

clipping (straight line segments), area clipping (polygons), curve clipping, and 

text clipping. The graphics packages usually include line and polygon clipping 

methods as standard components. In addition many graphics packages facilitate 

curved objects, specially spline curves and conics, such as circles and ellipses. 

An alternative way to handle curved objects is to approximate them with 

straight line segments and apply the line clipping or polygon clipping methods 

(Hearn and Baker 1998). 

There are several algorithms in literature to clip line segments against a 

convex polygon (Skala 1994). These algorithms have been derived from well-

known Cohen Sutherland (Cohen 1969), Liang Barsky (Liang and Barsky 1983, 

1984), and Cyrus Beck (Cyrus and Beck 1978) algorithms. Let N be the number 

of vertices of the convex polygon. All of the existing algorithms have O (N) 

time complexity except the algorithms proposed by Rappaport and Skala. The 

Rappaport algorithm and Skala algorithm have O (log N) time complexity 

(Rappaport 1991). The speed of these algorithms depends on more or less clever 

implementation of tests and intersection computation. The ECB line clipping 

algorithm was invented by observing the convexity feature of the clipping 

polygon and the possibility of binary search usage over polygon vertices (Skala 

1993). Skala further improved the ECB line clipping algorithm using the known 

order of vertices of the polygon to an O (log N) algorithm (Skala 1994). 

The Cohen Sutherland algorithm is a well-known algorithm for clipping line 

segments against a rectangular window (Cohen 1969). The original paper 

describes the algorithm when the edges of the rectangular window are parallel 

to the principle axes. The extended edges of the rectangular window partition 

the plane into nine regions. Each region is assigned a region code of four bits 

as shown in Figure 1. 

 

 
Fig. 1. The nine region codes 

 

The region codes of each endpoint of the line segment are computed first. It can 

be decided whether the line segment is completely inside by performing 

operator OR between the two region codes. If not, the line segment is tested for 

being completely outside by performing operator AND between the two region 
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codes. If the line segment is neither completely inside nor completely outside, 

then only intersections are calculated with the extended edges of the clipping 

window. This process is iterated until the final outcome is reached. The 

geometric transformations are used when the edges of the rectangular window 

are not parallel to the principle axes. The system is rotated so that the edges 

become parallel to the principle axes. Then the original algorithm can be used 

to clip the line segment. Again, the system is re-rotated to get the actual 

endpoints of the clipped line segment. These geometric transformations involve 

a higher computational cost due to the use of trigonometric functions. The 

number of regions generated by the extended edges depends on the angles 

between the edges and the number of vertices when the clipping window is a 

polygon. Therefore, the known algorithms for line clipping against a polygon 

do not use the tests similar to the Cohen Sutherland algorithm (Skala 1994). 

It is necessary to distinguish cases where line segments intersect a given 

window from those where line segments do not intersect the window in order 

to develop an effective line clipping algorithm. The Cyrus Beck algorithm 

performs direct computation of intersection points to solve this problem. The 

ECB algorithm was developed by using the separation theorem. However, the 

ECB algorithm does not use the known order of vertices of the given polygon 

and achieves O (N) time complexity (Skala 1994). The Rappaport algorithm is 

based on the known fact that whether a given point inside the convex polygon 

can be found in O (log N) time (Preparata and Shamos 1985). The other O (log 

N) algorithm proposed by Skala can be applied in situations where the edges of 

the convex polygon are arbitrarily oriented. 

This paper proposes a novel line segment clipping algorithm extending a 

concept proposed earlier (Kodituwakku et al. 2012, 2013) to a convex polygon. 

The proposed algorithm takes O (N) time and does not use the property of 

known order of vertices of the polygon. 

2 Material and Methods  

This section presents the proposed line clipping algorithm. A convex polygon 

is considered as the clipping window. The vertices of the convex polygon have 

been labeled as shown in Figure 2. 
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Fig 2. A general convex polygon clipping window 

The convex polygon has n vertices: A0, A1…, An-1. They form the polygon by 

connecting each vertex and its subsequent vertex with straight line segments as 

shown in Figure 1. Finally, A0 and An-1 are also connected to form the closed 

polygon. Note that the interior angle at each vertex is less than π and non-

consecutive edges do not intersect. Here, A0 ≡ (x[0], y[0]), A1 ≡ (x[1], y[1])…, 

An – 1 ≡ (x[n - 1], y[n - 1]). 

2.1 Mathematical background of the proposed algorithm 

The general equation of a straight line can be expressed as y = m * x + c. End 

points of the line segment to be clipped are A = (x1[0], y1[0]) and B = (x1[1], 

y1[1]), and m1 and c1 are considered as gradient and y-intercept of the line 

segment respectively. 

Then the mean (xc, yc) of the vertices of the polygon can be calculated as 

given below. 

𝑥𝑐 =
∑ 𝑥[𝑖]𝑛−1

𝑖=0

𝑛
;  𝑦𝑐 =

∑ 𝑦[𝑖]𝑛−1
𝑖=0

𝑛
 

 

Let m[i] and c[i] be the gradient and the y-intercept of the line segment AiAi+1 

respectively; where i = 0…, (n – 1). Then m[i] can be expressed as m[i] = 

(y[i+1] - y[i])/(x[i+1] - x[i]); where i = 0…, (n – 1). Note that the index 

arithmetic is modulo n. 

By substituting m[i] in y[i] = m[i] * x[i] + c[i], c[i] can be computed as c[i] 

= ((x[i+1] * y[i]) - (x[i] * y[i+1]))/(x[i+1] - x[i]); where i = 0…, (n - 1). 

Similarly, m1 and c1 (gradient and y-intercept respectively) of the line 

segment to be clipped are also calculated. 

Let val[i] = m[i] * xc – yc + c[i]; and val1[i][j] = m[i] * x1[j] - y1[j] + c[i] 

where i = 0…, (n – 1); j = 0, 1. 

In this method, the following two theorems are used (Green 1991). 
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Theorem 1: In a convex polygon, the mean of all vertices is always inside the 

polygon. 

Theorem 2: Let (p, q) and (r, s) be two points and a * x + b * y + c = 0 be an 

equation of a straight line. If the value of (a * p + b * q + c) * (a * r + b * s + c) 

is negative, then the two points are in the opposite sides of the straight line. 

Therefore, val[i] * val1[i][j] < 0 implies that the point (x1[j], y1[j]) is in the 

opposite side of the centroid with respect to ith  polygon boundary where i = 1, 

2…, (n - 1); j = 0, 1 and only in this case the intersection point of the line 

segment with the ith  boundary has to be calculated. 

 

 
 

Fig 3. Intersection calculation 

 

As shown in Figure 3, suppose (x[0], y[0]) is outside the polygon. Then the 

equation of the ith boundary of the polygon is y = m[i] * x + c[i]. The equation 

of the line segment is y = m1 * x + c1. By solving these two equations, we can 

get the intersection point (x_intersection, y_intersection). Then the resultant 

line segment is the line segment joining (x[1], y[1]) and (x_intersection, 

y_intersection). 

By applying intersection calculation, the line segment can be pruned with 

respect to each extended edge of the polygon so that it is will eventually end up 

as the final version. If the above procedure is performed to a completely outside 

line segment, it would become a single point theoretically. However, the 

resultant two endpoints are approximately equal due to the precision error 

occurs in calculation of intersection points. Therefore, completely outside line 

segments can be easily removed by using this fact (Kodituwakku et al. 2012, 

Kodituwakku et al. 2013). 

2.2 Pseudo code of the proposed algorithm 

All the symbols used in the following pseudo code have been considered in the 

previous sections. To increase the understandability of the pseudo code, the 

cases given below have been ignored from it. 
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Case 1: Line segment is just a point. 

Case 2: Line segment is parallel to the principle axes. 

Case 3: Polygon boundaries are parallel to the principle axes. 

Case 4: Line segment is parallel to some of the boundaries of the polygon. 

Above four cases have been addressed at the implementation stage.  Then the 

abstract pseudo code is as follows. 
L1: BEGIN 

L2:  

L3: // Calculate val[i] and val1[i][j] 

L4: For j = 0 to j = 1 

L5: For all the i boundaries of the polygon  

L6:  If ( val[i] * val1[i][j] < 0 ) Then 

L7:   //Calculate (x_intersection, y_intersection)  

L8:   x[j] = x_intersection; 

L9:   y[j] = y_intersection; 

L10:  EndIf 

L11: EndFor 

L12: EndFor 

L13: 

L14: // Initial line is completely outside 

L15: If (x[0] - x[1] < 1) AND (x[1] - x[0] < 1) Then 

L16: // Do nothing 

L17: Else 

L18: /*Save the line with end points   (x[0], y[0]), (x[1], y[1])*/ 

L19: EndIf 

L20: 

L21: END 

 

When the line segment is completely outside, applying the FOR loops makes it 

a single point theoretically. Since computers truncate latter part of decimals, 

testing the exact equality is not possible. Therefore, approximate equality 

should be tested (Line L15). If the distance between x-coordinates are less than 

one-pixel length, we can consider those two points are equal. Therefore, if the 

points (x[0], y[0]) and (x[1], y[1]) are equal, 
 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥[0], 𝑥[1]) < 1 → |𝑥[0] − 𝑥[1]| < 1 → (𝑥[0] − 𝑥[1]) < 1 𝐴𝑁𝐷 (𝑥[1] − 𝑥[0]) < 1 

3   Results & Discussion 

The proposed algorithm is developed so that it can be used for any polygon 

with any number of vertices. In order to simplify the analysis, a pentagon is 
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used as the clipping window. How a line segment is clipped against the 

pentagon window for all possible cases is explained below. 

 

Case 1: Line segment that is completely inside as shown in Figure 4. 

 

 
Fig 4. Line segment is completely inside. 

 
Consider point A: 

val[i] * val1[i][A] < 0 → false; i = 0, 1, 2, 3, 4. (Line L6) 

Therefore, the initial position of A is not changed. 

Consider point B: 

val[i] * val1[i][B] < 0 → false; i = 0, 1, 2, 3, 4. (Line L6) 

Therefore, the initial position of B is not changed. 

(x[A] - x[B] < 1) AND (x[B] - x[A] < 1) → false. (Line L15) 

Therefore, the line segment with the end points A and B is drawn. (Line L18) 

 

Case 2: Line segment which is completely outside as shown in Figure 5. 

 

 
Fig 5. Line segment is completely outside 

 
Consider point A: 

val[0] * val1[0][A] < 0 → true. (Line L6) 

Therefore, A → A’. (Line L8 & Line L9) 

val[1] * val1[1][A’] < 0 → true. (Line L6) 

Therefore, A’ → A’’. (Line L8 & Line L9) 

val[i] * val1[i][A’’] < 0  → false; i = 2, 3, 4. (Line L6) 

Consider point B: 

val[0] * val1[0][B] < 0 → false. (Line L6) 
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val[1] * val1[1][B] < 0 → true. (Line L6) 

Therefore, B → B’. (Line L8 & Line L9) 

val[i] * val1[i][B’] < 0 → false; i = 2, 3, 4. (Line L6) 

(x[A’’] - x[B’] < 1) AND (x[B’] - x[A’’] < 1) → true. (Line L15) 

Therefore, the line segment is ignored. (Line L16) 

 

Case 3: Line segment which intersects the clipping window as shown in Figure 

6. 

 

 
 

Fig 6. Line segment is intersecting the boundaries 

 
Consider point A: 

val[0] * val1[0][A] < 0 → true. (Line L6) 

Therefore, A → A’. (Line L8 and Line L9) 

val[i] * val1[i][A’] < 0 → false; i = 1, 2, 3, 4. (Line L6) 

Consider point B: 

val[i] * val1[i][B] < 0 → false; i = 0, 1. (Line L6) 

val[2] * val1[2][B] < 0 → true. (Line L6) 

Therefore, B → B’. (Line L8 and Line L9) 

val[i] * val1[i][B’] < 0 → false; i = 3, 4. (Line L6) 

(x[A’] - x[B’] < 1) AND (x[B’] - x[A’] < 1) → false. (Line 15) 

Therefore, the line with the end points A’ and B’ is drawn. (Line 18) 

 

Case 4: Line segment which is partially inside the clipping window as shown 

in Figure 7. 

 
Fig 7. Line segment is partially inside 
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Consider point A: 

val[i] * val1[0][i] < 0 → false; i = 0, 1, 2, 3, 4, 5, 6. (Line L6) 

Therefore, the initial position of A is not changed. 

Consider point B: 

val[0] * val1[0][B] < 0 → true. (Line L6) 

Therefore, B → B’. (Line L8 and Line L9) 

val[1] * val1[1][B’] < 0 → true. (Line L6) 

Therefore, B’ → B’’. (Line L8 and Line L9) 

val[i] * val1[i][B’’] < 0 → false; i = 2, 3, 4. (Line L6) 

(x[A] - x[B’’] < 1) AND (x[B’’] - x[A] < 1) → false. (Line 15) 

Therefore, the line with the end points A and B’’ is drawn. (Line 18) 

 

The proposed algorithm was compared against algorithms: Cyrus Beck, 

ECB, Rappaport, and Skala in order to validate the performance. The 

algorithms: Cyrus Beck and ECB have O (N) time complexity while the 

algorithms: Rappaport and Skala have O (log N) time complexity (Skala 1994). 

The time complexity of a line clipping algorithm is determined as the time taken 

to clip a given line segment against a polygon with N number of vertices. The 

line segment is tested against each edge of the polygon considering each end 

point of the line segment. Therefore, the time complexity of the proposed 

algorithm is O (N) + O (N) = O (N). Theoretical analysis proves that the 

proposed algorithm has the same speed as the algorithms: Cyrus Beck and ECB 

while it is slower than the algorithms: Rappaport and Skala. 

Theoretical time complexity compares the algorithms for large values of N. 

However, polygonal clip windows with small number of vertices are also used 

in practice (Hearn and Baker 1998). An experimental analysis was performed 

in order to compare the behavior of the proposed algorithm with the existing 

algorithms for convex polygons with small number of vertices. All the 

algorithms were implemented in C programming language with following 

hardware and software resources. 

Computer: Intel(R) Pentium(R) Dual CPU; E2180 @ 2.00 GHz; 2.00 GHz, 

0.98 GB of RAM; 

IDE: Turbo C++; Version 3.0; Copyright(c) 1990, 1992 by Borland 

International, Inc; 

A pentagon window with vertices (200, 50), (400, 100), (300, 400), (150, 

350) and (50, 250) was used (vertices are in boundary traversal order). Random 

points were generated by using the randomize () and random (double r) 

functions. Those random points were generated in the range of 0-550. They 

were used as the end points of line segments. Then the number of clock cycles 

consumed to clip 108 of such random line segments by each algorithm was 

counted. This procedure was repeated for 10 rounds where a new set of random 

line segments was used for each round. The results obtained are shown in Table 

1. For an example, in the first round CB, ECB, Rapport, Skala, and Proposed 
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algorithms consumed 4020, 3350, 3095, 2610, and 3762 clock cycles 

respectively. 
 

Table 1: The number of clock cycles to clip against pentagon window 
 

Round CB ECB Rappaport Skala Proposed 

1 4020 3350 3095 2610 3762 

2 4021 3351 3094 2611 3761 

3 4020 3351 3096 2610 3763 

4 4022 3352 3095 2612 3761 

5 4020 3351 3095 2611 3760 

6 4020 3350 3094 2610 3762 

7 4021 3351 3094 2611 3761 

8 4021 3352 3095 2611 3762 

9 4021 3350 3096 2612 3763 

10 4020 3351 3094 2610 3762 

 

Let T be the average number of clock cycles consumed by a given algorithm 

from the ten rounds given in the Table 1. Let’s define coefficients of 

effectiveness [2] v as v1 = TCB/TPro; v2 = TECB/TPro; v3 = TRap/TPro; v4 = TSka/TPro. 

Consider v = TAlg1/TAlg2 for the two algorithms Alg1 and Alg2. Thus, 𝑣 ⋚ 1 

gives a measure of effectiveness (in the sense of running time) of Algorithm 1 

against Algorithm 2. 

According to the values in the Table 1, v1 = 1.06, v2 = 0.89, v3 = 0.82, v4 = 

0.69. Therefore, the proposed algorithm is 6% faster than Cyrus Beck 

algorithm, 11%, 18% and 31% slower than ECB, Rapport and Skala algorithms 

respectively for a pentagon window. Further, the proposed algorithm was 

compared against the existing algorithms using the set of polygons shown in 

Table 2. Note that Pn denotes a polygon with n number of vertices and the 

vertices are shown in boundary traversal order. 
 

Table 2: The set of polygons. 
 

Polygon Vertices 

P3 (100, 100), (300, 150), (500, 400) 

P4 (200, 100), (300, 200), (200, 400), (100, 200) 

P5 (200, 50), (400, 100), (300, 400), (150, 350), (50, 250) 

P6 (100, 50), (150, 50), (400, 300), (350, 430), (90, 350), (50, 250) 

P7 (100, 400), (250, 450), (450, 400), (500, 350), (400, 100), (200, 50), (50, 300) 

P8 (100, 400), (250, 400), (400, 300), (500, 150), (200, 50), (150, 50), (60, 100), (50, 

300) 

P9 (150, 440), (300, 450), (400, 420), (500, 370), (350, 100), (250, 10), (100, 10), 

(10, 120), (50, 400) 

 

Next, a number of different polygons as shown in Table 2 were considered. The 

same strategy was performed without changing other conditions. Performance 

measures are listed in Table 3 and a comparison is shown in Figure 8. 
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Table 3: The number of clock cycles to clip against polygon windows 

 

 

 
 

Fig 8. The number of clock cycles to clip against polygon windows 
 

According to the results in Table 3 along with Figure 8, the proposed algorithm 

is faster than Cyrus Beck algorithm. Further, the proposed algorithm is faster 

than ECB algorithm when the number of vertices of the polygon is less than 5. 

The proposed algorithm is slower than the other existing algorithms. 

4   Conclusions 

A new algorithm of O (N) time complexity for clipping line segments against 

a convex polygon was proposed. The proposed algorithm was compared against 

the existing algorithms both theoretically and experimentally. The proposed 

algorithm is faster than Cyrus Beck algorithm and it is slower than ECB, 

Rappaport, and Skala algorithms. 

The existing four algorithms can handle convex polygons only and they fail 

to handle arbitrary polygons (Skala 1993). The notions used in the algorithms 

Polygon CB ECB Rappaport Skala Proposed v1 v2 v3 v4 

P3 3405 3825 2884 2530 3364 1.01 1.13 0.85 0.75 

P4 3661 3735 3403 2860 3595 1.01 1.03 0.94 0.79 

P5 4020 3351 3095 2610 3762 1.06 0.89 0.82 0.69 

P6 4317 3597 2853 2398 3964 1.08 0.9 0.71 0.6 

P7 4704 3590 2716 2283 4116 1.14 0.87 0.65 0.55 

P8 4919 4031 3034 2447 4288 1.14 0.94 0.7 0.57 

P9 5424 4140 3015 2432 4485 1.2 0.92 0.67 0.54 
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restrict them to convex polygons. The proposed algorithm computes the 

centroid of the polygon and considers that the centroid is inside the polygon. 

The centroid of an arbitrary polygon may be outside the polygon. Therefore, 

the proposed algorithm is also restricted to convex polygons. If a polygon 

contains a reflex vertex then it is not a convex polygon. The reflex vertices of 

a given polygon can be easily found (Wijeweera and Kodituwakku 2016). Thus, 

convex polygons can be identified. There are algorithms to partition an arbitrary 

polygon into a set of convex polygons (Wijeweera and Kodituwakku 2017). If 

a line segment needs to be clipped against an arbitrary polygon then the polygon 

could be partitioned into a set of convex polygons as the first step. The line 

segment could be clipped against each convex polygon and the set of derived 

clipped line segments could be merged to generate the final outcome. Thus, the 

proposed approach could be used to clip line segments again an arbitrary 

polygon as well. 

The time complexities of the proposed algorithm and the Cyrus Beck 

algorithm are equal. However, the proposed algorithm consumes smaller 

number of clock cycles than the Cyrus Beck algorithm according to the 

experimental results. The Cyrus Beck algorithm computes all the intersection 

points to select the actual intersection point. In contrast, the proposed algorithm 

can early exit and avoid unnecessary intersection calculations (See Figure 5 and 

Figure 6). Therefore, the proposed algorithm is faster than the Cyrus Beck 

algorithm in practice. 
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Appendix 

The implementation of the proposed algorithm in C# programming language is 

available as an appendix to the paper. 


