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Abstract. An analytic solution for the relativistic field equations isobtained for a non-stationary,
slowly rotating, cylindrically symmetric distribution ofperfect fluid universe. The new metric, is reg-
ular with the exception at the pointr = 0. There is a gravitational singularity atr = 0. At t = 0 the
pressurep and densityρ are maximum and tends to∞ throughout the radial coordinater (0< r < ∞),
but the solutions are well behaved fort > 0, andp andρ are decreasing to zero ast increases through
the range 0< t < ∞. So according to the model, it has the big bang singularity att = 0, whereρ
diverges.
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1. Introduction
Numerous attempts to obtain exact solutions of Einstein’s field equations representing
cylindrically symmetric perfect fluid matter distributions have so far been reported. But a
considerable number of these solutions have not been diligent in interpreting in a physi-
cally meaningful way or even in a less acceptable way. Thus within a collection of exact
solutions one finds many whose physical meaning is unknown oronly partially understood.

The main reason for this may be that interpretation is difficult and uncertain. Another
reason is, the observational verification of general relativity now and in the near future, is
likely to depend on a very small number of exact solutions. Therefore some workers feel
it is a waste of time to try to interpret metrics which have no prospect of observational
verification.

But it is obvious that we cannot claim to understand general relativity unless we can
determine the physics of the exact solutions we know. In the case of some of the solutions
there is no physics, or the solutions do not agree with known physics. Even if this is the
case it is important to try to obtain solutions and interpretthem as well as we can.

Even though a good collection of solutions exist for non-rotating cases (Adler, R., Bazin,
M. and Shiffer 1975, Davidson 1992, Gasperini and de Sabbata1985, Stephani 1982), there
is a rareness of the solutions for rotating cases. But duringthe last 40-45 years rotating
objects have been studied quite extensively (Saha 1981). Some of them have studied the
structure and stability of rapidly rotating fluid spheres (Butterworth and Isper 1975) with
various amounts of uniform and differential rotation and some have studied uniformly rotat-
ing white dwarfs and neutron stars up to second order in angular velocity. Other papers
related to numerical approach on this subject, have presented the analytic theory of slowly
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and uniformly rotating general relativistic bodies and discussed conditions of stability. It is
very important to study objects with some kind of rotation, as almost all objects in the sky
exhibit some form of rotation, and today there is even the possibility of the universe itself
having a slight rotation.

2. Field equations and method of obtaining solution
The tetrad formalism (Chandrasekhar 1983) has been used to obtain the tensor compo-
nents which we wanted to build-up the system of differentialequations, as handling metric
coefficients is rather easy in this method than in an approachsuch as involving the use of
Euler-Lagrange equations.

We consider the non-stationary, cylindrically symmetric metric in the following general
form:

ds2 = e2νdt2 −e2λdr2 −dz2− tr2(dφ−Ωdt)2, (1)

whereν,λ andΩ are functions of both timet and spatial coordinater only.Ω(r, t) represents
the dragging of inertial frames.

For slowly- rotating spacetimes, (i.e. only the first order terms in the angular velocities

ω =
dφ
dt

and Ω are considered) the following tetrad components of the Ricci tensor are
obtained.
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where lower indicesr andt of each variable denote differentiation with respect to thespatial
coordinater and timet, and the lower indices 0,1,2,3 represent the time coordinatet and
the spatial coordinatesr,z,φ respectively. Here and in what follows the bracketed indices
denote that a tetrad frame is being used.

The matter distribution is considered as a perfect fluid withfluid pressurep and mass
densityρ.

T(µν) = (ρ + p)u(µ)u(ν) − pg(µν). (3)
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For the case of slow rotation, the tetrad components of the four-velocity are obtained as:

u(0) = 1,

u(1) = 0,

u(2) = 0, (4)

u(3) =
rt 1/2(ω−Ω)

eν .

With these equations, (3) can be written as:

T(00) = ρ,

T(03) = (p+ ρ)e−νrt 1/2(Ω−ω),

T(11) = p, (5)

T(22) = p,

T(33) = p

andT becomes,

T = ρ−3p. (6)

According to the Einstein field equation,

R(µν) =−8π(T(µν) −
1
2

g(µν)T), (7)

again the Ricci components are obtained as:

R(00) =−4π(ρ + 3p),

R(01) = 0,

R(03) =−8πr(p+ρ)e−νt1/2(Ω−ω),

R(11) =−4π(ρ− p), (8)

R(13) = 0,

R(22) =−4π(ρ− p),

R(33) =−4π(ρ− p).

By using the equations (2) and (8) we get the following systemof equations:

(νrr −λrνr +ν2
r +

νr

r
)e−2λ+(

νt

2t
−λtt +νtλt −λ2

t +
1

4t2
)e−2ν = 4π(ρ+3p),

(
νr

2t
−

1
2tr

+
λt

r
)e−(ν+λ) = 0,



Wijewickrema and Wijayasiri: A solution for non-stationary ...
Ruhuna Journal of Science II, pp. 10–17, (2007) 13
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3. Results
Assuming thatν is a function oft only andλ is a function ofr andt, an analytic solution
of these equations is obtained as follows.
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(10)

e2λ =
k2t
r2

(11)

hence the metric as,

ds2 =
1
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4t
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dt2 −
k2t
r2

dr2−dz2 − tr2(dφ−Ωdt)2. (12)

e2λ → ∞ at r = 0 ∀t. Therefore there is a gravitational singularity at r=0. Furthermore, we
obtained the following results.
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wherek1 andk2 are arbitrary constants andk1 > 0 andk2 > 0.
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4. Discussion
Here in this attempt, we were interested in obtaining a family of cylindrically symmetric
cosmological models for a non-stationary, slowly rotatingperfect fluid distribution.

In this case, first of all, we had to choose a suitable general metric form.
Generally, in the case of non-rotating, it is convenient to adopt the metric form appropri-

ate to cylindrical symmetry as:

ds2 = D2(r, t)dt2−A2(r, t)dr2−B2(r, t)dz2−C2(r, t)dφ2. (17)

By using this general metric form, it has been found that a one-parameter solution of
the Einstein field equations for a non-stationary, non-rotating, perfect fluid universe exists.
This solution was obtained in (Davidson 1992) as:

D(r, t) = (1+ r2)−β(β+1)/2(2β+1),

A(r, t) = t(3β+1)/(7β+4)(1+ r2)β(3β+1)/2(2β+1),

B(r, t) = tβ/(7β+4)(1+ r2)β/2, (18)

C(r, t) = t(3β+2)/(7β+4)r(1+ r2)β/2.

Whereβ is a constant.
(To secure physically acceptable models, parameterβ is restricted to the range; 0≥ β ≥

−
2
5

).
Considering one of the above cases, a general metric has beenobtained for the case of

slowly rotating in the form:

ds2 = e2νdt2 −e2λdr2−dz2 − tr2(dφ−Ωdt)2 (19)

On the other hand we can deduce the special caseβ = 0 of (18), by makingΩ = 0 and
suitably changing the arbitrary variables and constants inthe sub sequent work. In this case,
the geometric character of the model changes to spatial homogeneity.

In this work, we have made several assumptions and conditions (boundary conditions) to
develop this metric. One of such main assumptions is that theuniverse has a slow rotation.
It is interesting that there are plenty of physical evidences that almost every object in the
sky exhibits some form of rotation, and today there is even the possibility of the universe
itself being endowed with a slight rotation.

So in order to satisfy the conditions of slow rotation, only the first-order terms in the
angular velocitiesω andΩ have been considered.

The following boundary conditions have also been used. Since the central axis is non-
rotating,ω andΩ should satisfy the boundary conditions,

Ω,ω,Ωr ,ωr −→ 0 asr −→ 0,
In addition to this, it has been assumed that the universe is non-rotating atr −→ ∞. So

thatω andΩ should satisfy,
Ω,ω,Ωr ,ωr −→ 0 asr −→ ∞.
Furthermore by using equation (14) it is possible to calculate an approximate value

for the constantk1. To do this we used the data from the NASA’s Wilkinson Microwave
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Figure 1 The variation of the density (gkm−3) of the universe against time (sec.)
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Figure 2 The behaviour of the dragging of the initial frame (Ω) against the radial coordinate (r).

Anisotropy Probe (WMAP) project. It has been estimated the age of the universe to be about
13.7 billion years old with an uncertainty of 200 million years.This measurement was made
by locating the first acoustic peak in the microwave background power spectrum to deter-
mine the size of the decoupling surface. The light travel to this surface yields a reliable age
for the universe. In addition to this, the lower limit of the critical density(5×10−15gkm−3)
Rowe (2001) was assumed as the present density of the universe. By using these two facts,
an approximate value fork1 was obtained as 8.4593298× 1033gkm−1. Hence we were able
to plot the graph of the density of the universe against time (in seconds) (See Figure 1).

By considering the equations (15) and (16), for any fixed value of time, we were able to
plot the behaviour of the two angular velocitiesΩ (See Figure 2)andω (See Figure 3). Here
the value of the constantk2 has been assumed as 1.

In Figure 4 we show the behaviours of the two angular velocitiesΩ (Left) andω (Right)
against the radial coordinate (r) and time (t).
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Figure 3 The behaviour of the angular velocity of the perfect fluid (ω) against the radial coordinate
(r).

Figure 4 Left: shows the behaviour of the dragging of the initial frame (Ω) against the radial coor-
dinate (r) and time (t). Right: shows the behaviour of the angular velocity of the perfect
fluid (ω) against the radial coordinate (r) and time (t).

5. Conclusion
According to the metric (12), it is regular with the exception that at the pointr = 0, and
has a time singularity att = 0 at which the pressurep and densityρ tend to∞ throughout
the radial coordinate range 0< r < ∞, but it is subsequently well-behaved ifk1 = 0, ρ = 0
∀t 6= 0 and we may takeρ = 0 ∀t as otherwiseρ → ∞ at t = 0 but becomes zero in an
instant!. Therefore takek1 6= 0 . Further,p andρ both are decreasing to zero ast increases
through the range 0< t < ∞ and equations (13) and (14) imply that this fluid model has
non-negative expressions for the mass density and pressure.

Even if the solution is not completely concordance with the idea of great big-bang, it
makes less disagreements at the critcial points and moreover, the result here seems to agree
with the physical interpretation to some extent with the big-bang theory.
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