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Abstract. An analytic solution for the relativistic field equations abtained for a non-stationary,
slowly rotating, cylindrically symmetric distribution gierfect fluid universe. The new metric, is reg-
ular with the exception at the point= 0. There is a gravitational singularity at= 0. Att = 0 the
pressurgy and density are maximum and tends tethroughout the radial coordinat€0 < r < o),
but the solutions are well behaved far 0, andp andp are decreasing to zero Bmcreases through
the range G< t < . So according to the model, it has the big bang singularity-a0, wherep
diverges.
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1. Introduction

Numerous attempts to obtain exact solutions of Einsteiekl fequations representing
cylindrically symmetric perfect fluid matter distributisthave so far been reported. But a
considerable number of these solutions have not been wliligeinterpreting in a physi-
cally meaningful way or even in a less acceptable way. Thtisinva collection of exact
solutions one finds many whose physical meaning is unknownlgrpartially understood.

The main reason for this may be that interpretation is diffiand uncertain. Another
reason is, the observational verification of general ngtgthow and in the near future, is
likely to depend on a very small number of exact solutionseréfore some workers feel
it is a waste of time to try to interpret metrics which have mogpect of observational
verification.

But it is obvious that we cannot claim to understand genexativity unless we can
determine the physics of the exact solutions we know. In #s& ©f some of the solutions
there is no physics, or the solutions do not agree with knolysigs. Even if this is the
case it is important to try to obtain solutions and interpineim as well as we can.

Even though a good collection of solutions exist for noratiog cases (Adler, R., Bazin,
M. and Shiffer 1975, Davidson 1992, Gasperini and de Salil®88, Stephani 1982), there
is a rareness of the solutions for rotating cases. But dutiedast 40-45 years rotating
objects have been studied quite extensively (Saha 198e %&b them have studied the
structure and stability of rapidly rotating fluid spheresi(@rworth and Isper 1975) with
various amounts of uniform and differential rotation anthedhave studied uniformly rotat-
ing white dwarfs and neutron stars up to second order in ang@locity. Other papers
related to numerical approach on this subject, have prede¢hé analytic theory of slowly
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and uniformly rotating general relativistic bodies anccdssed conditions of stability. It is
very important to study objects with some kind of rotatiosiagmost all objects in the sky
exhibit some form of rotation, and today there is even thesipdiy of the universe itself
having a slight rotation.

2. Field equations and method of obtaining solution
The tetrad formalism (Chandrasekhar 1983) has been usebtamdhe tensor compo-
nents which we wanted to build-up the system of differem@glations, as handling metric
coefficients is rather easy in this method than in an appreach as involving the use of
Euler-Lagrange equations.

We consider the non-stationary, cylindrically symmetrietrit in the following general
form:

ds = e?dt? — e2dr®> — dZ — tr’(de— Qdt)?, (1)

wherev, A andQ are functions of both timeand spatial coordinateonly. Q(r, t) represents
the dragging of inertial frames.
For slowly- rotating spacetimes, (i.e. only the first ordamis in the angular velocities

d : : .
w= a9 and Q are considered) the following tetrad components of the iR@tsor are
obtained.
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where lower indices andt of each variable denote differentiation with respect toshatial
coordinater and timet, and the lower indices,Q, 2, 3 represent the time coordinatand
the spatial coordinatesz, ¢ respectively. Here and in what follows the bracketed irglice
denote that a tetrad frame is being used.
The matter distribution is considered as a perfect fluid wiitid pressurep and mass

densityp.

= (P + P)UgyUp) — PYw)- (3)
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For the case of slow rotation, the tetrad components of thevfelocity are obtained as:

u® =1,
u =0,
u? -0, ()
9 n2(w-Q)
=g

With these equations, (3) can be written as:
Too) =P,

Toy = (p+p)ert"2(Q —w),

Tay =P, (5)
Ty =p;
Tey=p
andT becomes,
T=p—3p. (6)
According to the Einstein field equation,
1
Riw) = =8M(Tjw) = 5940 T), (7)

again the Ricci components are obtained as:

R0 = —411(p + 3p),

Ry =0,
Ros = —8r (p+p)e t"*(Q—w),
Ray = —41(p—p), (8)
Ri13 =0,
Rz = —41(p — p),
Rag = —41(p — p).
By using the equations (2) and (8) we get the following systéequations:
Ve, Y 1
(Vrr N\ +Vr2+ T)e 2 + (Zt — A+ VA —)\t2+ E)e Y — 4T[(p+3p),
QoL Adee g

2t 2tr v ’
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3. Results
Assuming thav is a function oft only andA is a function ofr andt, an analytic solution
of these equations is obtained as follows.

kot
1 K,
kot
éh>§ (12)
hence the metric as,
1 2 kzt 2 2 2
ds’ = it —Fdr —dZ —tr¥(de— Qdt)2 (12)
ki + P
2

e? — o atr = 0 Vt. Therefore there is a gravitational singularity at r=0.tRarmore, we
obtained the following results.

p=p (13
p—ggp (14)
-1 " (15)

4t (1+7r2)3
\1/2
(ke + k2) t

2r3(r* 4 5r2 — 20)

w=Q+
klkz(kj_ + %)1/2(1 + r2)5

(16)

wherek; andk, are arbitrary constants akgd> 0 andk, > 0.
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4. Discussion
Here in this attempt, we were interested in obtaining a familcylindrically symmetric
cosmological models for a non-stationary, slowly rotajiregfect fluid distribution.

In this case, first of all, we had to choose a suitable geneg#ticrform.

Generally, in the case of non-rotating, it is convenientdog the metric form appropri-
ate to cylindrical symmetry as:

ds’ = D?(r,t)dt* — A%(r,t)dr? — B?(r,t)dZ — C?(r,t)d¢’. (17)

By using this general metric form, it has been found that a-mamameter solution of
the Einstein field equations for a non-stationary, nontitaga perfect fluid universe exists.
This solution was obtained in (Davidson 1992) as:

D(r,t)=(1+ |’2)7I3([3+1)/2(28+1)7
A(r,t) = tEFHL/(TB+4) (1 4 ¢ 2) BB+ 2(28+1)
B(r,t) =t¥F (14 r2)P, (18)
C(r,t) =tCR+2/ B+ (1 4 r2)B/2,

Wheref} is a constant.
§To secure physically acceptable models, paranfeigrestricted to the range; 03 >

~5.
%onsidering one of the above cases, a general metric hasobésined for the case of
slowly rotating in the form:

ds = edt® — e2dr? — dZ — tr*(de— Qdt)? (19)

On the other hand we can deduce the special Bas® of (18), by makingQ = 0 and
suitably changing the arbitrary variables and constarttsdrsub sequent work. In this case,
the geometric character of the model changes to spatial gensty.

In this work, we have made several assumptions and condifimundary conditions) to
develop this metric. One of such main assumptions is thaitiherse has a slow rotation.
It is interesting that there are plenty of physical evideniteat almost every object in the
sky exhibits some form of rotation, and today there is evenpibssibility of the universe
itself being endowed with a slight rotation.

So in order to satisfy the conditions of slow rotation, orie first-order terms in the
angular velocitieso andQ have been considered.

The following boundary conditions have also been used.eSihe central axis is non-
rotating,w andQ should satisfy the boundary conditions,

Q wQ,w — 0asr — 0,

In addition to this, it has been assumed that the universerisrotating ar — . So
thatw andQ should satisfy,

Q w Q,w — 0asr — oo,

Furthermore by using equation (14) it is possible to catleuln approximate value
for the constank;. To do this we used the data from the NASA's Wilkinson Micrewa
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Figure 1  The variation of the density (gknT?) of the universe against time (sec)
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Figure 2  The behaviour of the dragging of the initial frame (Q) against the radial coordinate (r).

Anisotropy Probe (WMAP) project. It has been estimated tfeecd the universe to be about
13.7 billion years old with an uncertainty of 200 million yeaFhis measurement was made
by locating the first acoustic peak in the microwave backgdopower spectrum to deter-
mine the size of the decoupling surface. The light travehis surface yields a reliable age
for the universe. In addition to this, the lower limit of thetical density(5 x 10-*°gkm 3)
Rowe (2001) was assumed as the present density of the uniByrsising these two facts,
an approximate value fd¢ was obtained as.8593298< 10**gknt. Hence we were able
to plot the graph of the density of the universe against timsdconds) (See Figure 1).

By considering the equations (15) and (16), for any fixedaitime, we were able to
plot the behaviour of the two angular velocit@gSee Figure 2)ana (See Figure 3). Here
the value of the constakj has been assumed as 1.

In Figure 4 we show the behaviours of the two angular velesfd (Left) andw (Right)
against the radial coordinate) @nd time ).
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Figure 3  The behaviour of the angular velocity of the perfect fluid (w) against the radial coordinate

(r).

Figure 4 L eft: shows the behaviour of the dragging of the initial frame (Q) against the radial coor-
dinate (r) and time (t). Right: shows the behaviour of the angular velocity of the perfect
fluid (w) against the radial coordinate (r) and time (t).

5. Conclusion
According to the metric (12), it is regular with the exceptitat at the point = 0, and
has a time singularity at= 0 at which the pressune and densityp tend toce throughout
the radial coordinate range<Or < o, but it is subsequently well-behavedkif=0,p =0
vt # 0 and we may tak@ = 0 Vt as otherwisgp — « att = 0 but becomes zero in an
instantl. Therefore takle, # 0 . Further,p andp both are decreasing to zerotascreases
through the range €& t < o and equations (13) and (14) imply that this fluid model has
non-negative expressions for the mass density and pressure

Even if the solution is not completely concordance with ttheai of great big-bang, it
makes less disagreements at the critcial points and margbeaesult here seems to agree
with the physical interpretation to some extent with the bémng theory.
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