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Abstract. In comparative studies responses of two populations are often summarized in stratified
2×K tables with ordinal categories. A test, calledQEt test, is proposed for testing the homogenuity
of the populations against non-linear alternatives in suchtables. The asymptotic distributions of pro-
posed test are obtained both under the null and alternative hypothesis. The powers of theQEt test and
extended Mantal test are compared by simulation.
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1. Introduction
Data are often summarized in ordinal 2×K tables in comparative medical studies, and sta-
tistical tests such as Pearson’s chi-squared test (Pearson, 1900), Wilcoxon test(Wilcoxon,
1945), Nair’s test (Nair, 1986), cumulative chi-squared test (Takeuchi and Hirotsu,1982),
and maxχ2 test (Hirotsu,1983) are applied to those data for detectingthe difference of two
distributions. It is well known that Pearson’s chi-squaredtest has no good powers against
ordered alternatives. The Wilcoxon test is specifically designed for testing location differ-
ence of two samples; also the tests are asymptotically uniformly most powerful unbiased
tests for logistic linear alternatives. Whereas Nair’s test is designed for detecting dispersion
alternatives. The cumulative chi-squared test and maxχ2 test are ominibus tests developed
for a wider class of alternatives including linear and non-linear responses. Here we call the
response patterns like A, B and C in Table 1 the linear and the other patterns the non-linear;
more specifically, the pattern D, E,· · · , and I respectively called the∩ pattern,∪ pattern,
· · · , and��

��

��pattern. We developed theQt test (Jayasekara and Yanagawa, 1995; Jayasekara,
Nishiyama and Yanagawa, 1999) for non-linear responses in 2× K tables. TheQt test is
shown to have higher powers than those tests just described when the control and treatment
groups show the combination of the patterns of non-linear responses.

Now confounding variables such as sex, age, blood pressure and others are involved in
medical data and it is important to block their effects on testing. The above statistical tests
lack this function and logistic models are conventionally employed. However, as is well
known, the result of logistic models depend on the goodness of fit of the models to the data,
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Table 1 Response probabilities and patterns.

Ordered categories
Pattern 1 2 3 4 5

A 0.2 0.2 0.2 0.2 0.2
B � 0.1 0.15 0.2 0.25 0.3
C Q 0.3 0.25 0.2 0.15 0.1
D ∩ 0.15 0.2 0.3 0.25 0.1
E ∪ 0.25 0.2 0.1 0.15 0.3
F ��

�� 0.25 0.1 0.2 0.3 0.15
G ��

�� 0.1 0.25 0.2 0.15 0.3
H ��

��

�� 0.2 0.1 0.3 0.15 0.25
I ��

��

�� 0.15 0.25 0.1 0.3 0.2

and yet it is not easy to establish the models, in particular,when responses are non-linear
and the size of the data is not large. Here we may see the raisond’etre of nonparametric
tests. As far as we are aware the extended Mantel test (Mantel1963, Lindis, Heyman, and
Koch, 1978, Yanagawa 1986)(called EMT test in the sequel) isthe only test that has been
developed in the sprit. The EMT test adjusts for the effect ofthe confounding variables by
stratification.

In this paper we consider the same framework as the EMT test and develop a test for
testing the homogenuity against non-linear alternatives.More specifically, considering 2×
K tables such as those given in Table 2 which have been constructed in thel -th stratum,
l = 1,2, · · · ,L, to block the effect of confounding variables, we extended theQt test. It is
shown that the extendedQt test has higher power in most cases than EMT test when the
alternatives are non-linear.

2. The Test Statistics
We suppose in Table 2 thatYl1 = (Yl11,Yl12, · · · ,Yl1k)

′ and Yl2 = (Yl21,Yl22, · · · ,Yl2k)
′ are

multinomial random vectors independently distributed with parametersnl1, (pl11, pl12, · · · , pl1k)
′

andnl2, (pl21, pl22, · · · , pl2k)
′ respectively (l = 1,2, · · · ,L).

Suppose that categoriesB1,B2, · · · ,BK are ordinal (B1 < B2 < · · · < BK), and define the
odds-ratio of categoryBk relative to categoryB1 by ψlk = pl11pl2k/pl21pl1k (k = 1,2, · · · ,K).
The homogenuity of the distributions of the control and treatment groups in the table may
be represented byψlk = 1 for all k = 1,2, · · · ,K and l = 1,2, · · · ,L, which we simply
denote byψ ≡ 1. Thus the problemma is testingH0 : ψ ≡ 1 againstH1 : ψlk 6= 1 for some
k = 2, · · ·K andl = 1,2, · · · ,L. In particular, considered under the alternatives are the odds
ratios derived from the combinations of those linear and non-linear response patterns pre-
sented in Table 1.

We extend theQt test(Jayasekara and Yanagawa (1995), Jayasekara and Nishiyama(1996)
) for testingH0 vs.H1. Let clk be the Wilcoxon scorollarye in thel -th table defined bycl1 =
(τl1 − Nl)/2 andclk = Σk−1

j=1τl j + (τli − Nl)/2 for k = 2,3, · · · ,K, whereτlk is the marginal
total in Table 2. Note that it is normalized to satisfyΣK

k=1τlkclk = 0 for l = 1, · · · ,L.
Now for twoK dimensional vectorsal andbl in l -th stratum we define the inner product

of al andbl by (al ,bl) = ΣK
k=1τlkalkblk and the norm ofal by ‖al‖= (al ,al)

1/2.
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Table 2 2×K table in stratum l , l = 1, · · · ,L.

Ordered Categories
Stratuml B1 B2 · · · BK Total
Control Yl11 Yl12 · · · Yl1K nl1

Treatment Yl21 Yl22 · · · Yl2K nl2

Total τl1 τl2 · · · τlK Nl

Let cr
lk be ther-th power ofclk, and putclr = (cr

l1,c
r
l2, · · · ,cr

lK)′, r = 0,1, · · · ,K − 1.
Furthermore letal0 = cl0/‖clo‖ andalr = dlr /‖dlr‖, wheredlr = clr − Σr−1

j=0(clr ,al j )al j , r =
1,2, · · · ,K −1. Note that

(alr ,alr ′) =

{

1 if r = r ′,
0 if r 6= r ′, for r, r ′ = 0,1, · · · ,K −1.

(1)

Putting for giventε{1,2, · · · ,K −1}
A = (alr ),l=1,2,··· ,L;r=1,··· ,t (KL× t matrix),
Y2 = (Y′

12, · · · ,Y′
L2)

′ (KL dimensional vector),
S2 = ∑L

l=1 nl1nl2/Nl(Nl −1),
and

UEt = A′Y2/S
we propose the followingQEt as a test statistic for testingH0 vs.H1: QEt = U′

EtUEt for each
tε{1,2, · · · ,K −1}. LetUr be the r-th elemmaent ofUEt, then we have

Ur =
L

∑
l=1

a′
lr Yl2/S, (2)

and theQEt may represented as follows:

QEt =U2
1 +U2

2 + · · ·+U2
t .

Remark: QEt is identical to the test statistic of EMT test whent = 1, and to the Wilcoxon
test statistic (Wilcoxon, 1945) whent = 1 andL = 1.

Now underH0, the conditional distribution ofYl2 given Cl = {nl1,nl2, τl1, · · · , τlK} is
multiple hypergeometric with

E[Yl2k|Cl ] = nl2τlk/Nl

Cov[Yl2k,Yl2k′ |Cl ] =
nl1nl2

N2
l (Nl −1)

τlk(δ jk′Nl − τlk′), for k,k′ = 1, · · · ,K,

whereδkk′ = 1 if k = k′ and 0 otherwise.

THEOREM 1. Under H0, the elemmaents ofUEt, i.e., Ur , r = 1,2, · · · , t, are uncorol-
laryrelated with zero mean and unit variance when conditioned onC = {Cl , l = 1, · · · ,L}.

Proof. We first showE[UEt|C] = 0. Puttingτl = (τl1, · · · , τlK)′, we have from (1)

a′
lr τl = 0. (3)
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Thus

E[UEt|C] = A′
tE[Y2|C]/S

= A′
t(n12τ′1/N1, · · · ,nL2τ′L/NL)

′/S

=

( L

∑
l=1

nl2a′
l1τl/Nl , · · · ,

L

∑
l=1

nl2a′
lt τl/Nl

)′

/S

= 0.

We next compute the conditional covariance matrix ofUEt. SinceYl2, l = 1, · · · ,L, are
independent, the conditional covariance matrixV(UEt|C) can be expressed as,

V(UEt|C) = A′
tV(Y2|C)At/S2

= A′
t









V(Y′
l2|C)

. 0
0 .

V(Y′
L2|C)









At/S2

V(UEt|C) =

(

L

∑
l=1

a′
lrV(Y′

l2|C)alr ′

)

/S2 for r, r ′ = 1, · · · , t. (4)

Since

L

∑
l=1

a′
lrV(Y′

l2|C)alr ′ =
L

∑
l=1

nl1nl2

N2
l (Nl −1)

[Nl a′
lr









τl1

. 0
0 .

τlk









alr ′ − a′
lr τl τ′l alr ′ ],

it follows from (3) that

L

∑
l=1

a′
lrV(Y′

l2|C)alr ′ =
L

∑
l=1

nl1nl2

Nl(Nl −1)
(alr ,alr ′).

Thus from (1)

L

∑
l=1

a′
lrV(Y′

l2|C)alr ′/S2 =

{

1 if r = r ′,
0 if r 6= r ′, r, r ′ = 0,1, · · · ,K −1.

Therefore from (4), we have
V(UEt|C) = It .

3. Asymptotic Distributions
Theorem 1 shows that the elemmaents ofQEt are uncorollaryrelated and furthermore from
(2) they are linear combinations ofYl2 = (Yl21, · · · ,Yl2K). However, their weight vectors,
alr ’s, depends onNl , which makes the asymptotic theory not straightforward. Weassume
that whenNl → ∞ the marginal totalsnli andτlk for l = 1, · · · L, satisfy:
(A1) nli/Nl → γli , 0< γli < 1, for i = 1,2, andτlk/Nl → ρlk, 0< ρlk < 1, for k = 1,2, · · · ,K.
To begin with we review the normal approximation of a multiple hypergeometric distribu-
tion.
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3.1. Normal Approximation of a Multiple Hypergeometric Distribution
Plackett (1981) showed that when assumption (A1) is satisfied the asymptotic conditional
distribution ofXl = (Yl22, · · · ,Yl2K)′ givenCl = {nl1,nl2, τl1, · · · , τlK}, is aK−1 dimensional
normal with meanml2 and covariance matrixVl , whereml2 = (ml22, · · · ,ml2k)

′ andV−1
l =

(σl jk) with σlkk′ = m−1
l11 + m−1

l21 + (m−1
l1k + m−1

l2k)δkk′, for k,k′ = 2, · · · ,K and l = 1, · · · ,L.
Here the sequence{mlik}, i = 1,2; k = 1,2, · · · ,K, is determined uniquely by equations
∑K

k=1 mlik = nli , ∑2
i=1 mlik = τlk, andml11ml2k/ml21ml1k = ψlk, for i = 1,2; k = 1,2, · · · ,K

and l = 1, · · · ,L. It is known (Sinkhorn, 1967) that the sequence may be obtained by the
following iterative scaling procedure:

m(1)
l1k =

nl1

K
, k = 1,2, · · · ,K

m(1)
l21 =

nl2

K[1+ ∑K
j=2(ψl j −1)/K]

m(1)
l2k =

nl2ψlk

K[1+ ∑K
j=2(ψl j −1)/K]

, k = 2, · · · ,K

m(2)
lik =

m(1)
lik τlk

m(1)
l .k

,

m(3)
lik =

m(2)
lik nli

m(2)
li .

,
.
.
.

m(2h)
lik =

m(2h−1)
lik τlk

m(2h−1)
l .k

,

m(2h+1)
lik =

m(2h)
lik nli

m(2h)
li .

, h= 1,2, · · · ,and l= 1, · · · ,L.

3.2. Asymptotic Distributions Under H0

We first evaluate the weight,alrk. We writeN1/2
l alrk = O(1) if and only if N1/2

l alrk tends to a
constant asN → ∞.

LEMMA 1. If (A1) is satisfied, then
(i) N−1

l clrk = O(1), where clrk = cr
lk, is the r-th power of the k-th Wilcoxon scorollarye in

the l-th table, for r= 1,2, · · · ,K −1, k= 1,2, · · · ,K and l= 1, · · · ,L.
(ii) Let al0k be the k-th elemmaent ofal0. Then N−r

l (clr ,al0)al0k = O(1), for r =
1,2, · · · ,K −1, k= 1,2, · · · ,K and l= 1, · · · ,L.

(iii) Let dlvk be the k-th component ofdlv. If N−v
l dlvk = O(1), k= 1,2, · · · ,K, then for any

v= 1,2, · · · , we have
(a) N−2v−1

l ‖dlv‖
2 = O(1),

(b) N−r
l (clr ,dlv)dlvk/‖dlv‖

2 = O(1), l = 1, · · · ,L.
(iv) N−r

l dlrk = O(1) for r = 1,2, · · · ,K −1, k= 1,2, · · · ,K and l= 1, · · · ,L.
(v) N1/2

l alrk = O(1) for r = 1,2, · · · ,K −1, k= 1,2, · · · ,K and l= 1, · · · ,L.

Proof. (i) By the definition ofclk, and from (A1), we may getN−1
l clk = O(1) for l =

1, · · · ,L. Thus it is obvious thatN−r
l cr

lk = O(1). (ii) By the definition ofal0 we haveal0k =
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1/N1/2
l for all k. So from (i) we obtainN−(r+1/2)

l (clr ,al0) = O(1). Thus we have (ii). (iii)
(a) The result may be obtained by the definition ofdlv. (b) Expanding the inner product
(clr ,dlv) and applying (i) we may showN−(r+l+1)

l (clr ,dlv) = O(1). Now using (a), the result
follows. (iv) To prove this result we use induction onr. In case ofr = 1,

dl1k = cl1k − (cl1,al0)al0k, for k= 1,2, · · · ,K.

Applying (i) and (ii), it follows thatN−1
l dl1k = O(1) for k = 1,2, · · · ,K. Suppose that the

result is true forr = 1,2, · · · ,m−1. Since

dlm = clm −
m−1

∑
j=0

(clm,al j )al j ,

= clm − (clm,al0)al0 −
m−1

∑
j=1

(clm,dl j )
dl j

‖dl j‖2
,

it follows thatN−m
l dlmk = O(1) from (i), (ii) and (iii). So the result is true forr = m. Thus

by the induction the result follows. (v) From the definition of alr and also by (iv) the result
is straightforward.

Next, we consider the asymptotic distribution of the test statistics underH0. To apply the
normal approximation in section 3.1 we represent thet dimensional vectorUEt by:

UEt = B′W/S, (5)

where
B = (blr ),blr = (alr2−alr1, · · · ,alrK −alr1)

′N1/2
l , l = 1, · · · ,L; r = 1,2, · · · , t,

W = (W′
1,W

′
2, · · · ,W′

L)
′, Wl = N−1/2

l (Xl −nl2τl/Nl).

THEOREM 2. Under H0, QEt is asymptotically distributed as a chi-squared distribution
with t degrees of freedom as N→ ∞, l = 1,2, · · · ,L.

Proof. From section 3.1 we havemlik = nli τlk/Nl , underH0. Thus the conditional distri-
bution ofWi givenCl = {nl1,nl2, τl1, · · · , τlK} converges in distribution toNK−1(0,∑l0) as
Nl → ∞, where∑−1

l0 = (σl jk0), j,k = 2, · · · ,K, with σl jk0 = [ρ−1
l1 + δ jkρ−1

lk ]/(γl1γl2). Further-
more, sinceN1/2

l alrk = O(1) from Lemmama 1(v), we haveblr = O(1). Thus asNl → ∞,
l = 1, · · · ,L, it will be easy to show thatUEt = B′W/S converges in distribution to at
dimensional normal distribution with mean zero and the covariance matrix

V[UEt]∞ = B′









∑10

. 0
0 .

∑L0









B/S2 (6)

Now putting

Ml =









ρl2(Nl −ρl2) −ρl2ρl3 · · · −ρl2ρlK

−ρl3ρl2 ρl3(Nl −ρl3) · · · −ρl3ρlK

. . · · · .
−ρlK ρl2 −ρlK ρl3 · · · ρlK(Nl −ρlK)









γl1γl2,
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we may show

Ml

−1

∑
l0

= IK−1.

Furthermore, from (1)

B′









M1

. 0
0 .

ML









B/S2 ∼ It ,

where∼ means that the ratio of the both hands side tends to one asNl → ∞, l = 1,2, · · · ,L.
Thus from (6)

V[UEt]∞ ∼ It ,

andQEt = U′
EtUEt follows asymptotically a chi-squared distribution witht degrees of free-

dom.

3.3. Asymptotic Distribution Under Contiguous Alternatives
In this section we obtain the asymptotic distribution ofQEt under alternative hypothesis
H1 : ψlk = 1+ Alk/N1/2

l , for k = 2,3, · · · ,K, whereAlk is a constant.

LEMMA 2. Under H1, we may represent mlik = m0
lik + N1/2

l ηlik + O(N1/2
l ) for i = 1,2,

k = 1,2, · · · ,K and l = 1, · · · ,L, where m0
lik = nli τk/Nl is the asymptotic mean under H0,

and

ηi1 = (−1)i+1N1/2
l γl1γl2ρl1

K

∑
j=2

(ψl j −1)ψl j

ηik = (−1)iN1/2
l γl1γl2ρlk[ψlk −1−

K

∑
j=2

(ψl j −1)ψl j ]

k = 2,3, · · · ,K.

Proof. Adopting the iterative scaling algoritheorem in section 3.1, we have the following
expressions form(1)

l1k,m
(1)
l21m

(1)
l2k,m

(2)
li1 andm(2)

lik , underH1.

m(1)
l1k =

nl1

K

m(1)
l21 =

nl2

K
[1−

K

∑
j=2

(ψl j −1)

K
+ o(N−1/2

l )]

m(1)
l2k =

nl2

K
[ψlk −

K

∑
j=2

(ψl j −1)

K
+ o(N−1/2

l )], k = 2,3, · · · ,K,

m(2)
li1 = m0

li1 +(−1)i+1Nl γl1γl2ρl1

K

∑
j=2

(ψl j −1)

K
+ o(N−1/2

l ),

m(2)
lik = m0

lik +(−1)iNl γl1γl2ρlk[ψlk −1−
K

∑
j=2

(ψl j −1)

K
] + o(N−1/2

l ).
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Using mathematical induction onv, we may show

m(v)
lik = m0

lik + N1/2
l ηlik + o(N1/2

l ),

k = 1,2, · · · ,K, andv= 3,4, · · · . Thus we have the desired results.

THEOREM 3. Under H1, QEt is asymptotically distributed as a non-central chi-squared
distribution with t degrees of freedom. The noncentrality parameter is given byλ = ∑t

r=1 δ2
r ,

whereδr = ∑L
l=1 Nl γl1γl2 ∑K

k=2 alrkρlk(ψlk −1)/S.

Proof. From Section 3.1 and Lemmama 2 it follows that underH1, the conditional distri-
bution ofWl givenCl = {nl1,nl2, τl1, · · · , τlK} converges in distribution toNK−1(ηl2,∑l0),
whereηl2 = (ηl22, · · · ,ηl2K)′, and∑l0 is that given in the proof of Theorem 2. Thus under
H1, UEt = B′W/Sconverges in distribution tot dimentional normal distribution with mean

δEt = B′(η′
12, · · · ,η′

L2)
′/S

and covariance matrixV[UEt]∞, which is shown to beIt in the proof of Theorem 2. The r-th
elemmaent ofδEt, sayδr , is obtained as:

δr =
L

∑
l=1

K

∑
k=2

N1/2
l (alrk −alr1)ηl2k/S.

From (7) andψl1 = 1, we have

δr =
L

∑
l=1

Nl γl1γl2

K

∑
k=2

alrkρlk(ψlk −1)/S.

The theorem is immediately obtained from these results.

COROLLARY 1. The power of U2
r is approximately maximized when lnψlk = βlalrk , k=

1,2, · · · ,K, for some constantβl , l = 1,2, · · · ,L.

Proof. From the proof of Theorem 3 it follows thatU2
r follows asymptotically a noncentral

chi-squared distribution with one degree of freedom with noncentral parameterδ2
r . Thus the

asymptotic power ofU2
r for testingH0 vs.H1 may be approximated by

P(U2
r ≥ χ2

1(α)|H0)≈Φ(δr −χ(α)),

whereΦ is the cdf of a standard normal distribution. Sinceδr may be represented byδr =

∑L
l=1 γl1γl2(alr ,ψl − 1)/S, this power is maximized whenψ − 1 = βl alr , that is when ln

ψlk ≈ βl alrk for some constantβl .
From the corollaryollary the statisticQEt = U2

1 + U2
2 + · · · + U2

t is viewed as a sum of
the statistics that are asymptotically optimum against thealternatives which are expressed
as log linearities of the odds ratios with scorollaryealrk , the standardized r-th power of the
Wilcoxon scorollarye.
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4. Simulation Studies
Simulation was conducted to compare theQEt, t = 1,2,3,4, test with the EMT test (Man-
tel 1963, Landis, Heyman and Koch, 1978, Yanagawa 1986). Because the EMT test with
Wilcoxon scorollarye is equivalent to theQE1 test, we herein considered the EMT test with
scorollaryes 0,1,2, · · · , andK −1 assigned to categoriesB1,B2, · · · , andBK, respectively.

First we assessed Type I error of theQEt, t = 1,2,3,4 and EMT tests at the significance
levelα = 0.05. The response probabilities employed are those listed inTable 1. We consid-
ered four strata and combinations of response patterns shown in the first column of Table
3. For example,(� ,∩, ��

��

, ��

��

��) in the table means that the response probabilities in the
1st stratum arep111 = p121 = 0.1, p112 = p122 = 0.15, p113 = p123 = 0.2, p114 = p124 = 0.25,
p115 = p125 = 0.3; 2nd stratum arep211 = p221 = 0.1, p212 = p222 = 0.15, p213 = p223 = 0.2,
p214 = p224 = 0.25, p215= p225 = 0.3; and so on. We generated 10,000, four 2×5 tables for
each combination of patterns and computed empirical significance levels whennl1 = nl2 =
60,80, and 100. The results are listed in Table 3. The table showsthat Type I error of the
QEt and EMT tests are close to the nominal level for all combinations of patterns.

Second we assessed the powers of theQEt, t = 1,2,3,4, and EMT tests. We conducted
similar simulation as above by using again the response probabilities listed in Table 1.
Considering the combinations of pattern of distribution ofY1 from {( , , , ),
(� ,� ,� ,� ), ( Q, Q, Q, Q), · · · ,(����
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��
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��
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)}
we computed the powers of the tests for all combinations of patterns of each distribution,

48 all together, whennl1 = nl2 = 100, l = 1,2,3 and 4. The tests which give the largest
and second largest powers are listed in Table 4a, 4b, and 4c. For example, the entry of the
2nd row and 3rd column in Table 4a means that when the pattern of Y1 is and that ofY2

is the test with the largest power isQE4 followed byQE3; and the entry of the 2nd row and
4th column in Table 4c means that when the pattern ofY1 is and that ofY2 then the test
with the largest power isQE4 followed byQE3. The tests in the tables show that those tests
have equal powers. The tables show that in most combinations, 45 among 48, the powers
of the class of theQEt test are larger or equal to than those of the EMT test. Table 5 lists
the maximum, mean and minimum values of the powers of each test for 48 combinations
of response patterns considered in Table 4. Inspection of the table shows that the mean
and minimum powers of theQEt test dominates the corollaryresponding values of the other
tests, and that the maximum powers of the tests are almost equal.

5. Discussion
TheQEt test is proposed for testing the homogeneity against non-linear responses inL2×K
tables. We took into account the combinations of patterns oflinear and non-linear responses
summarized in Table 1, and shown that the class ofQEt test is superior to the extended Man-
tel test (Mantel 1963, Landis, Heyman and Koch 1978, Yanagawa 1986). Those non-linear
patterns we considered often appear, for example, in Phase III randomized clinical trials for
proving the efficacy of a new drug against the active control,in which the efficacy is some-
times categorized as excellent, effective slightly effective, not effective and aggravation.
We emphasize that in such example, the response probabilities like 0.15, 0.25, 0.1, 0.3 and



Jayasekara and Yanagawa: Testing Non-Linear Ordinal Responses ...
Ruhuna Journal of Science 2, pp. 18–29, (2007) 27

Table 3 Estimated Type I errors of the QEt, t = 1,2,3,4, and extended Mantel test (EMT).

Pattern Sample size Estimated Type I error levels
nl1 = nl2, l = 1,2,3,4 QE1 QE2 QE3 QE4 EMT

( , , , ) 60 0.052 0.052 0.052 0.052 0.052
80 0.05 0.048 0.048 0.047 0.051
100 0.049 0.049 0.0.05 0.051 0.049

(� ,� ,� ,�) 60 0.054 0.052 0.052 0.049 0.054
80 0.051 0.051 0.048 0.047 0.049
100 0.052 0.052 0.051 0.05 0.053

( Q, Q, Q, Q) 60 0.053 0.054 0.053 0.05 0.052
80 0.05 0.049 0.05 0.05 0.053
100 0.052 0.051 0.049 0.048 0.05

(∩,∩,∩,∩) 60 0.052 0.051 0.049 0.049 0.051
80 0.049 0.048 0.05 0.05 0.049
100 0.052 0.047 0.05 0.05 0.052

(∪,∪,∪,∪) 60 0.054 0.056 0.052 0.052 0.054
80 0.051 0.051 0.05 0.048 0.051
100 0.052 0.052 0.051 0.051 0.052

(��

��,����,��

��,��

��) 60 0.053 0.054 0.052 0.053 0.052
80 0.05 0.051 0.051 0.051 0.049
100 0.052 0.051 0.05 0.048 0.052

(��

��,��

��,��

��,����) 60 0.052 0.05 0.051 0.052 0.053
80 0.049 0.049 0.05 0.047 0.049
100 0.051 0.052 0.051 0.05 0.052

(��

��

��,��

��

��,��

��

��,��

��

��) 60 0.054 0.054 0.052 0.051 0.053
80 0.052 0.049 0.051 0.05 0.052
100 0.051 0.052 0.051 0.05 0.052

(��

��

��,��

��

��,��

��

��,��

��

��) 60 0.052 0.05 0.051 0.049 0.053
80 0.05 0.05 0.05 0.049 0.05
100 0.05 0.051 0.053 0.054 0.05

(� ,∩, ��
��

, ��

��

��) 60 0.053 0.054 0.051 0.05 0.053
80 0.052 0.049 0.049 0.05 0.052
100 0.053 0.052 0.054 0.05 0.055

( Q,∪,
��

��,
��

��

��

) 60 0.054 0.052 0.051 0.048 0.053
80 0.05 0.05 0.049 0.047 0.051
100 0.049 0.048 0.049 0.049 0.048

(∩, ��
��

, ��

��

��,
��

��

��

) 60 0.053 0.053 0.049 0.051 0.053
80 0.05 0.051 0.051 0.05 0.049
100 0.05 0.049 0.05 0.047 0.05

(∪, ��
��

,
��

��,
��

��

��

)} 60 0.055 0.051 0.048 0.05 0.054
80 0.05 0.051 0.05 0.05 0.049
100 0.052 0.05 0.049 0.048 0.051
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Table 4 Tests which give the largest and second largest powers:

Y2

Y1 (�,∩,��
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,��
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��

) (∩,��

��

,��
��
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��

��

) (∪,��

��

,
��

��,
��

��

��

)
( , , , ) QE4, QE3 QE4, QE3 QE3, QE4 QE4, QE2

(�,�,�,�) QE4,QE1 (QE1,QE2,QE3, (QE1,QE2,QE3, EMT, QE2

QE4, EMT) QE4, EMT)
( Q, Q, Q, Q) (QE1,QE2,QE3, (QE1,QE2,QE3, (QE1,QE2,QE3, (QE1,QE2,QE3,

QE4, EMT) QE4, EMT) QE4, EMT) QE4, EMT)
(∩,∩,∩,∩) QE2,QE4 (QE2,QE3, QE2,QE3 (QE2,QE3,

QE4, EMT) QE2,QE1)
(∪,∪,∪,∪) (QE2,QE3, QE2,QE3 (QE2,QE3, QE3,QE2

QE4, EMT) QE4,QE1)
(��
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Table 5 The maximum, mean and the minimum powers of the tests for 48 combinations of the
patterns in Table 4.

QE1 QE2 QE3 QE4 EMT
Max. 1 1 1 1 1
Mean 0.343 0.561 0.7050.832 0.345
Min. 0.049 0.076 0.0840.154 0.048

0.2,i.e. pattern is not unreasonable. It is suggested in thesimulation that when all combina-
tions of those response patterns are taken into account theQE4 test is good choice. TheQEt

is shown to be the sum ofU2
r , r = 1,2, · · · , t, that are asymptotically optimum against the

alternatives which are expressed as log linearities of the odds ratios with scorollaryealrk,
the standardized r-th power of the Wilcoxon scorollarye.
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