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Abstract. Einstein field equations for a charged dusty universe have already investigated. In this paper
we present a new class of analytical solutions in terms of canonical coordinates for Einstein’s field
equations; assuming that the spacetime is spherically symmetric, formed by non-charged dust with
uniform matter distribution. The metric we considered is ofthe form,ds2 = e2νdt2

−e2λdr2
− r2dθ2

−

r2 sin2 θ(dφ − Ωdt)2, whereν,λ andΩ are functions of the radial coordinater only. Our model has
only a space singularity atr = 0 and the solutions are well behaved forr > 0. In addition, we assume
that the proper densityρ is constant. Ω(r), the angular velocity of the inertial frame; can be an
arbitrary function ofr, which satisfies required boundary conditions to be a slow rotation.
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1. INTRODUCTION
The general relativity theory still dwells at the highest place among the gravitational theo-
ries; but the physical meaning of many exact solutions of Einstein’s equations are unknown,
or only partially understood Bonnor (1992). One of the majordifficulties is the, either long
time taken to find a experimental verifications to prove the solutions have real physical
meaning. However general relativity is central to the understanding of frontier astrophysical
phenomena such as black holes, pulsars, the big bang and the universe itself Milner (2000),
Ltartle (2003). It is interesting to note that every object in the space exhibits some form of
rotation. For further details see, Bayin (1981). Therefore, during the last decades, rotating
objects have been studied quite extensively Tiwari et al. (1986), Bayin (1981). In this paper
our aim is to study the case of slowly rotating dust sphere in free space. We consider two
types of rotations in our equation,Ω(r), which represents the dragging of inertial frames
andω, which represents the angular velocity of dust distribution, along the coordinate axis
φ, i.e.,ω = dφ/dt. In the approximation of slow rotation (1) leads to a system of equation
in the first order terms, and then new analytical solutions for λ, ν, Ω, andω are found sub-
jected to the assumptionsρ = constant and time independent. The boundary conditions for
Ω are lim

r→∞
Ω(r)→ 0, lim

r→∞
(∂Ω(r)/∂r)→ 0 and lim

r→0
Ω(r)→ 0, lim

r→0
(∂Ω(r)/∂r)→ 0. The same

boundary conditions should be satisfied byω. We take the cosmological constantΛ to be
equal to zero for simplicity and consider a static metric.
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2. FIELD EQUATIONS
We consider the static, spherically symmetric metric in thestandard form Chandrasekher
(1910)

ds2 = gi jdxidx j; i, j = 0,1,2,3

ds2 = e2νdt2
− e2λdr2

− r2dθ2 (1)
− r2 sin2 θ(dφ−Ωdt)2;

whereν,λ andΩ are functions of the radial coordinater only. The coordinatesx0, x1, x2 and
x3 correspond tot, r, θ andφ respectively. The functionΩ represents the angular velocity
of the inertial frames along the rotation axis.
The Einstein field equations are, Chandrasekher (1910), Tiwari et al. (1986),

Gi j = Ri j −
1
2

Rgi j = 8πTi j.

and Ricci tensorRi j is defined by Tiwari et al. (1986) ,

Ri j = gklRik jl. (2)

The Ricci tensor components in tetrad form for slowly rotating sphere, related with the
metric (1) are as follows:

R(00) =−e−2λ(νrr −λrνr + ν2
r +

2νr

r
), (3)

R(11) = e−2λ(νrr −λrνr + ν2
r −

2
r

λr),

R(22) = (
νr

2
−

λr

r
+

1
r2

)e−2λ
−

1
r2

,

R(03) =−

1
2

sinθe−(2λ+ν)[Ωrrr + 4Ωr −Ωrr(λr + νr)];

where,Ωr andωr denote differentiation with respect tor.

The energy momentum tensorT(i j) of dust is defined by Tiwari et al. (1986),

T(i j) = ρU(i)U( j);

whereρ is the proper density of the universe, andU i are the four velocity components of
the matter distribution along the each coordinate axis. ThecomponentsU i are given by,

U0(r) =
dx0

ds
,

U1(r) =U2(r) = 0,

U3(r) =
dφ
dx0

dx0

ds
= ωU0.
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We use the tetrad frameei
(α) which is associated with the metric (1),

eα
(0) = (e−ν,0,0,0),

eα
(1) = (0, e−λ,0,0),

eα
(2) = (0,0,

1
r
,0),

eα
(3) = (0,0,0,

1
r

sinθ).

ei
(α)e(β)i = η(αβ) =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









and

ei
(α)e

(α)
j = δi

j

(an index within parentheses denotes a tetrad index).

For the case of slowly rotation, tetrad components for four velocity are obtained as follows,

U(0) = 1, U(1) = 0, U(2) = 0, U(3) = re−ν sinθ(Ω−ω).

The field equations for dust universe in the tetrad frame can be expressed in the form

R(i j) =−8π(T(i j) −
1
2

g(i j)T ). (4)

The tetrad components for energy momentum tensor are as follows:

T(00) = ρ (5)
T(01) = T(02) = T(11) = T(12) = T(22) = T(13) = T(33) = 0,

T(03) = ρe−νr sinθ(Ω−ω).

From (4)and (5) the Ricci tensor components can be obtained as follows:

R(01) = R(02) = R(12) = R(13) = R(23) = 0, (6)
R(00) = R(11) = R(22) = R(33) =−4πρ,

R(03) =−8πρr sinθ(Ω−ω).

From (3)and (6) the following non- linear system of equations can be obtained,

4πρ = e−2λ(νrr −λrνr + ν2
r +

2νr

r
), (7)

−4πρ = e−2λ(νrr −λrνr + ν2
r −

2
r

λr),

−4πρ = (
νr

2
−

λr

r
+

1
r2

)e−2λ
−

1
r2

,

8πρ sinθ(Ω−ω) =
1
2

sinθe−(2λ+ν)(Ωrrr + 4Ωr −Ωrr(λr + νr)).
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3. THE SOLUTION
All the solutions are obtained forρ = constant. The solutions fore2λ ande2ν can be obtained
by solving the first three of system of equations (7). We have,

e2λ =

(

3
6+ 8πρr2

)

e2ν = 4

(

(12+ 2kr2)5/4

r3/2

)

; k = 8πρ. (8)

We have to assume a value forΩ which is a function ofr only that satisfies the given
boundary conditions. Therefore,Ω is arbitrary and in this paper we choose functions forΩ
as a function ofr only. Let us take,

Ω(1) =
r3

(2+ r2)4
+

r(4r2 + r3)

(r2 + 1)5
.

Thenω(r) can be found as follows,

ω = Ω−

e−(2λ+ν)

2k
[Ωrrr + 4Ωr −Ωrr(λr + νr)] . (9)

It is clear that bothΩ(r) andω(r) satisfy the boundary conditions asr → 0 andr → ∞.
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Figure 1 variation of dragging velocity of inertial frames in spacetime with increasing r (r, the
distance from origin of the universe to the imaginated position); the dragging inertial
frames have a maximal velocity in 0< r < 1 (r, measured in light years)

Fig. 1 shows theΩ has a maximum value 06 r < 1 , meaning that the inertial frames drag
with a maximum velocity in 06 r < 1.
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Figure 2 The variation of angular velocity of coordinate axis φ, with increasing r (r, distance from
origin of the universe to the imaginary point)

We choose a differentΩ as follows,

Ω(2) =
r3

(2r5 + 4)2
sin

(

4r2

(r2 + 5)2

)

.
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Figure 3 variation of dragging velocity of inertial frames in spacetime with increasing r, shows one
maximum rotation 0< r < 1, value of it less than to Ω1

Shape of the graph similar to that of fig. 1, but the maximum value for rotations in a differ-
ent range and the value is completely different from that is given in Ω1.

Using (9) we can find newω for Ω2 .

1 2 3 4 5
r

0.001

0.002

0.003

0.004

0.005

0.006

0.007

ΩHrL

Figure 4 The variation of angular velocity of axis φ, with increasing r, shows maximum rotation
1< r < 2
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By substituting valuee2λ, e2ν andΩ in (1) we can obtain two different models for the
universe as follows:

ds2 = 4

(

(12+ 2kr2)5/4

r3/2

)

dt2
−

(

3
6+ 8πρr2

)

dr2
− r2dθ2

− r2 sin2 θ
(

dφ−

(

r3

(2+ r2)4
+

r(4r2 + r3)

(r2 + 1)5

)

dt2

)2

.

ds2 = 4

(

(12+ 2kr2)5/4

r3/2

)

dt2
−

(

3
6+ 8πρr2

)

dr2
− r2dθ2

− r2 sin2 θ
(

dφ−

r3

(2r5 + 4)2
sin

(

4r2

(r2 + 5)2

)

dt2

)2

.

4. DISCUSSION AND CONCLUSION
In our work, we like to obtain a family of spherical symmetriccosmological models for
a non-stationary rotating dust distribution. It is a fact that the motions of the planets were
investigated theoretically to a greater degree of accuracy, the theory of the motion of a
rigid body was developed and applied to the problem of the rotation of the earth. However,
applications of general relativity are few indeed, a state of affairs may perhaps be accounted
for by its extreme mathematical complexity; investigatorshave found specific problems
mathematically difficult and have soon turned away in discouragement. We developed our
metric for the particular case whenρ = constant, for uniform matter distribution. To satisfy
the slow rotation condition we consider terms of the first order inΩ. We make the following
observations.

1. The model has a space singularity atr = 0
2. Infinite number of solutions can be found forΩ andω. Considering two expressions

for Ω the dragging velocity of the inertial frames, we find that it maximixed at at least one
time 06 r < ∞. The angular velocity of dust distribution along the axisφ, also has one
minimum value in 06 r < ∞. Although, the solutions are satisfy the boundary conditions.
All the solutions shows maximum and minimum rotations whichmake us wonder because
according to our assumptions no external force has been exist exception the gravity, and
it is rather difficult to give high accuracy physical explanations to solutions. To sum up,
solutions for Einstein field equations are not unique and linear, it is not easy to give physical
explanations.

5. ACKNOWLEDGMENTS
We are thanking to Dr.J.R.Wedegadera making valuable comments and suggestions.

References
Bayin, Selcuk S. 1981. Slowly rotating fluid fluid spheres in general relativity with and without

radiation.Phys. Rev.D. 24 2056 – 2065.

Bonnor, WB. 1992. Physical interpretation of vacum solutions of einstein’s equations. par i. time-
independent solutions.General relativity and Gravitation 24.



Karunawardana and Wijayasiri: Slowly rotating dust sphere ...
Ruhuna Journal of Science 1, pp. 41–47, (2007) 47

Chandrasekher, S. 1910.The mathematical theory of blackholes. Oxfered Univ. Press, NY.

Ltartle, James B. 2003.Gravity - An introduction to Einstein’s general relativity. Pearson Education
Pte, Ltd. Indian Branch.

Milner, Brayan. 2000.Cosmology. Cambridge Univ. Press,Cambridge.

Tiwari, RN., JR. Rao, , RR. Kanakamedala. 1986. Slowly rotating charged fluid spheres in general
relativity. Phys. Rev.D. 34 327 – 330.


