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Abstract. Einstein field equations for a charged dusty universe haeady investigated. In this paper
we present a new class of analytical solutions in terms obwigal coordinates for Einstein’s field
equations; assuming that the spacetime is spherically gfrianformed by non-charged dust with
uniform matter distribution. The metric we considered ithef form,ds? = e dt2 — e?dr2 — r2de? —
r2sir? 8(de — Qdt)?, wherev, A andQ are functions of the radial coordinateonly. Our model has
only a space singularity at= 0 and the solutions are well behaved far 0. In addition, we assume
that the proper densitp is constant. Q(r), the angular velocity of the inertial frame; can be an
arbitrary function ofr, which satisfies required boundary conditions to be a sldaticm.
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1. INTRODUCTION

The general relativity theory still dwells at the highesig# among the gravitational theo-
ries; but the physical meaning of many exact solutions o$t€in’s equations are unknown,
or only partially understood Bonnor (1992). One of the mdjéficulties is the, either long
time taken to find a experimental verifications to prove thieitsns have real physical
meaning. However general relativity is central to the ustierding of frontier astrophysical
phenomena such as black holes, pulsars, the big bang anditieese itself Milner (2000),
Ltartle (2003). It is interesting to note that every objecttie space exhibits some form of
rotation. For further details see, Bayin (1981). Therefdtging the last decades, rotating
objects have been studied quite extensively Tiwari et 886}, Bayin (1981). In this paper
our aim is to study the case of slowly rotating dust spheredr §pace. We consider two
types of rotations in our equatiof,(r), which represents the dragging of inertial frames
andw, which represents the angular velocity of dust distributmlong the coordinate axis
@, i.e.,w= dg/dt. In the approximation of slow rotation (1) leads to a systdraquation

in the first order terms, and then new analytical solutiomafw, Q, andw are found sub-
jected to the assumptiops= constant and time independent. The boundary conditions for
Qare I|mQ( ) — 0, Ilm(aQ( )/0r) — 0 and IlmQ( ) — 0, Ilm(aQ( )/0r) — 0. The same
boundary conditions should be satlsfled(byWe take the cosmologlcal constakto be
equal to zero for simplicity and consider a static metric.
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2. FIELD EQUATIONS
We consider the static, spherically symmetric metric ingtendard form Chandrasekher
(1910)

ds? =g;dxdx’; i,j=0,1,23
ds? = dt? — 2 dr? — r2de? 1)
—r?sirf 8(de— Qdt)?

wherev, A andQ are functions of the radial coordinatenly. The coordinateg’, x*, x> and

x3 correspond td, r, 6 and@ respectively. The functio® represents the angular velocity
of the inertial frames along the rotation axis.

The Einstein field equations are, Chandrasekher (1910prTaval. (1986),

1
Gij =R — 5Rg; = 8.
and Ricci tensoR;; is defined by Tiwari et al. (1986) ,
Rj=9"Ruj. 2

The Ricci tensor components in tetrad form for slowly raotgtsphere, related with the
metric (1) are as follows:

2V
R(OO) = _eiz)\(vrr - )\rVr +Vr2 + Tr)> (3)
2
Ry =€ 2 (Vi — AV + V2 — F)\r),
v, A 1 1
Ry = (5 — Tr + ﬁ)efa R

Rog = -5 sinBe”@MV[Q,r +4Q, — Q,r(A, +V,)];
where,Q, andw, denote differentiation with respect to

The energy momentum tensgy; of dust is defined by Tiwari et al. (1986),
Tij) =PUiU(j;

wherep is the proper density of the universe, dnidare the four velocity components of
the matter distribution along the each coordinate axis.cdmponents)' are given by,

=2,

Ul(r):L?ZS(r):O,

do dx°
3 i 0
u=(r) B0 ds wJ”.
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We use the tetrad framfga) which is associated with the metric (1),

%>(*oom

:me*om
% =(0,0,-,0),
1
(000 smO)
10 0 O
0-10 O
€®® =N =| 09 0 -1 0
00 O0-1
and
go e’ =3

(an index within parentheses denotes a tetrad index).

For the case of slowly rotation, tetrad components for faloeity are obtained as follows,
Ug=1 Ugy=0, Uy=0, Ugz=re"’sind(Q—w).

The field equations for dust universe in the tetrad frame easgxpressed in the form

1
Rij) = —8M(Tij) — 59 T)- 4)
The tetrad components for energy momentum tensor are as/fll
Tog =p 5)

Toy = Tog = Tay = Tz = T2 = Tay = Tizg =0,
Tiog = pe "rsinB(Q — w).

From (4)and (5) the Riccitensor components can be obtaisiéallaws:

Ry = =R =Ry =R =0, (6)
Roog = R(ll Ri22 = Rzs = —4T11D,
Ri03 = —8mpr sinB(Q — w).

From (3)and (6) the following non- linear system of equadican be obtained,
4T[p:eiz)\(vrr _}\rvr +Vr2+ %)7 (7)

2
—4mp=e 2 (v, — AV, + V2 — F)\r),
voh 1, L
r2’

(12_7 r2
8mpsind(Q — oo)fésnee @(Qr +4Q, — Q1 (A +Vy)).



Karunawardana and Wijayasiri: Sowly rotating dust sphere....
44 Ruhuna Journal of Science 1, pp. 41-47, (2007)

3. THE SOLUTION
All the solutions are obtained far= constant. The solutions foe?* ande?’ can be obtained
by solving the first three of system of equations (7). We have,

B 3 (A2 2kr2)EAN

We have to assume a value f@rwhich is a function ofr only that satisfies the given
boundary conditions. Therefor@, is arbitrary and in this paper we choose functionstor
as a function of only. Let us take,

r Jrr(4r2+r3)
(247124 (r241)5°

Q1) =

Thenw(r) can be found as follows,

e—(z)\+v)

w:Q—T[Qr,r+4Qr—Q,r(}\r+vr)]. 9

It is clear that botlQ(r) andw(r) satisfy the boundary conditions as- 0 andr — co.
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Figure 1  variation of dragging velocity of inertial frames in spacetime with increasing r (r, the
distance from origin of the universe to the imaginated position); the dragging inertial
frames have a maximal velocity in 0 < r < 1 (r, measured in light years)

Fig. 1 shows th& has a maximum valueQ r < 1, meaning that the inertial frames drag
with a maximum velocity in G<r < 1.
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Figure 2  The variation of angular velocity of coordinate axis @, with increasing r (r, distance from
origin of the universe to the imaginary point)

We choose a differerf® as follows,

rs . 4r?
2 =~ G ey
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Figure 3  variation of dragging velocity of inertial frames in spacetime with increasing r, shows one
maximum rotation 0 <r < 1, value of it less than to Q;

Shape of the graph similar to that of fig. 1, but the maximunuedibr rotations in a differ-
ent range and the value is completely different from thatiemyin Q;.

Using (9) we can find new for Q, .
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Figure 4  The variation of angular velocity of axis ¢, with increasing r, shows maximum rotation
I<r<?2
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By substituting value?, € andQ in (1) we can obtain two different models for the
universe as follows:

(22K 3 2 2
dsz4<—r3/2 dt 68 dr? —r?de

. r3 r(4r24rd) 2
_r25|n26<d(p—<(2+r2)4+ GESIE )dt2> .

(22K 3 2 2y
dsz4<—r3/2 dt 61 8 dr? —r2de

2
_2sit8 (do— — " sin( —*°_\ar
¢ (2r5+4)2 (r2+5)2 '

4. DISCUSSION AND CONCLUSION
In our work, we like to obtain a family of spherical symmetdasmological models for
a non-stationary rotating dust distribution. It is a fadttthe motions of the planets were
investigated theoretically to a greater degree of accutheytheory of the motion of a
rigid body was developed and applied to the problem of thatiaot of the earth. However,
applications of general relativity are few indeed, a stétdfairs may perhaps be accounted
for by its extreme mathematical complexity; investigatbeve found specific problems
mathematically difficult and have soon turned away in disagament. We developed our
metric for the particular case when= constant, for uniform matter distribution. To satisfy
the slow rotation condition we consider terms of the firseoiid Q. We make the following
observations.

1. The model has a space singularity at 0

2. Infinite number of solutions can be found farandw. Considering two expressions
for Q the dragging velocity of the inertial frames, we find that @ximixed at at least one
time 0< r < «. The angular velocity of dust distribution along the agjsalso has one
minimum value in 0< r < co. Although, the solutions are satisfy the boundary conagio
All the solutions shows maximum and minimum rotations whitdike us wonder because
according to our assumptions no external force has beehexdsption the gravity, and
it is rather difficult to give high accuracy physical expléoas to solutions. To sum up,
solutions for Einstein field equations are not unique areHinit is not easy to give physical
explanations.
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