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Abstract. The melt spinning process for artificial fibers has been studily many research groups
throughout the world during the last four decades. Howes@nparison of flow-induced crystalliza-

tion melt spinning processes has not yet been treated inténature. In this study, we analyse the
dynamics of the flow induced crystallization melt spinninggqess. Further, we study the sensitivity
of the process with respect to fluid shear modulus. Non-Nesatoand Maxwell-Oldroyd models

are used to describe the rheology of the polymer the fiber identd. It has been found that the
flow-induced crystallization Maxwell-Oldroyd model has@sper bound for the final velocity.
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1. Introduction

The fiber spinning process is used to make all types of syiothettile fibers (nylon,
polyester, rayon, etc.). In the melt spinning version of gnecess, molten polymer is
extruded a die called a spinneret to create a thin long filseraway from the spinneret, the
fiber is wrapped around a drum, which pulls it away at a presrdeéhed take—up speed.
The take—up speed is much higher than the extrusion speeadglirstrial processes the
take—up speed is about 5@mand the extrusion speed is about ¥8nsee (2, 4). The ratio
between the take—up spegdand the extrusion speeg is called draw—ratio and denoted
by d = v, /vo > 1 and hence the filament is stretched considerably in lengiittzerefore
decreases in diameter. The ambient atmosphere tempeiatuetow the polymer solidi-
fication temperature such that the polymer is cooled andifieb before the take—up, see
Figure 1. In industrial processes a whole bundle of hundoédmgle filaments is extruded
and spun in parallel, however for the analysis we considergesfilament.

The dynamics of melt spinning processes has been studiedaby nesearch groups
throughout the world during the last decades starting with ¢arly works of Kase and
Matsuo (3) and Ziabicki (10). Despite great scientific pesgrin the dynamics of fiber
formation processes, especially in flow induced crystion process, there are still some
unsettled issues. For example, comparison of flow-inducgstallization melt spinning
processes has not yet been treated in the literature. Thk#igigyof the Maxwell-Oldroyd
model (both isothermal and non-isothermal) with respedh&characteristic relaxation
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Figure 1  Sketch of the melt spinning process.

time has been discussed in the literature without considehie crystallization process (7,
8). To investigate the same concept with the crystallirgpimcess is quite interesting from
both the theoretical and industrial points of view becausedlosely related to high quality
control of products and its theoretical analysis involves fundamental understanding of
the nonlinear dynamics of the process. In this study, weyarahe behaviour of the flow
induced crystallization melt spinning process using nawbhbnian and Maxwell-Oldroyd
models. Further, we study the sensitivity of the flow inducegstallization process with
respect to the fluid shear modulus.

2. Meéet Spinning Models

Considering the basic conservation laws for the mass, mtumeand energy of the viscous
polymer jet, one can obtain the following set of equationsaberaging over the cross—
section of the slender fiber, see (4, 5, 6, 7).

pAV =W . (1a)
dv dAt A
p Vdd—z = d—g }\/;Cdpaerz + pAg(; (1b)
T  20ym (0]
pvaE R/ (T—To) + pAHvd—Z , (1c)

In the mass balance (1# denotes the cross—sectional area of the fiberyasthe velocity

of the fiber along the spinline. The densfiyof the polymer is assumed to be constant. In
the momentum balance (1lz)denotes the coordinate along the spinline and the axiasstre
T is related via the constitutive equations (for the non-Nmuan case equation (1d) and the
Maxwell-Oldroyd case equation (1e))

dv

T:3nd_zv

(1d)



S.SNN. Perera: Comparison of Flow-induced ...

46 Ruhuna Journal of Science Ill, pp. 44-52, (2008)
dt dv dv
T+HA|(V——21— | =3n— le
+ ( dz dz) Nz (1e)

to the viscosity and characteristic relaxation time

In the energy equation (1¢), andC, denote the temperature and the heat capacity of the
polymer, T, is the temperature of the quench air andenotes the heat transfer coefficient
between the fiber and the quench air.

According to (4), we assume the following relation for thehigansfer coefficient

0.21 z
o= WKRQSH |:1+

depending on the Reynolds—number of the quench air flow

2Vpair \/K
Rey, = iy
Eir Nair Tt

Here R, is the radius of the spinnergty;, N andk represent respectively the density,
viscosity and heat conductivity of the air ands the velocity of the quench air.

The crystallization process generates an enthalpy by @and this is represented by
third term of the equation (1c) akH is the specific heat of fusion of a perfect crystal and
@ is the degree of crystallinity. According to (4), the moda the evolution ofp is given

by

6425
V2

do T — Toax \ 2
VE((pm—(p)Kmaxexp[—MnZ( 5 )] (af)

Hereq. is the ultimate crystallinityK,., the maximum crystallization ratd,., the fluid
temperature having the maximum crystallization rate Rritknotes the crystallization half
width temperature range.

The viscosity and characteristic relaxation time are glwgn

E./1 1
N ="nNo exp E T_?o ) (19)
E. /1 1

Heren, > O is the zero shear viscosity at the initial temperalyr&, denotes the activation
energy,Rs is equal to the gas constant akg= 2 (G is the fluid shear modulus).
The system (1) is subject to the boundary conditions

v=yv, T=Tp ¢=0 atz=0 (2i)
v=v at z=L (1))

whereL denotes the length of the spinline.
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3. Dimensionless Form
Introducing the dimensionless quantities

z v z T A TL (0]
V=" 7= T== A=— T=—n,¢=
L Vo L TO AO r]0V0 (p (p°°

)

the system (1) can be formulated in dimensionless form. pirgpthe star and considering
the non-Newtonian and Maxwell-Oldroyd cases the systenbegresented as follows

g_\Z/_ % 1 172 -
d—;—Re ﬁw—Frl+Clvg>+§%, (2b)
3—(2[) = Kr\erL <1%(p> exp [—4In2 <T _DTW>2] . (2d)
Revg—\zl = 3—; \T/gvo—li- Re (I;r Clvg) ) (3a)
3r]d =1+ De vd—z—2 dz) (3b)
‘;‘Zp KVO max (%") exp [—4In2 (T _DTm”)z] . 3d)
In system (2) and (3), Re "L"O is the Reynolds number, Fr= gL is the inverse of the

_ Cap Lﬁr 20Lym
Froude numbelC; = p% is the scaled drag coefficient aﬁ)@l Covo A denotes the

scaled heat transfer coefficient. The Deborah number Deéndiy

. }\0V0 E. 1
De= TeXp[RGTO <? — 1)} .

The systems (2) and (3), are subject to the boundary conditio

1 T(O)=1 and @0)=
(1):d,

whered is the draw ratio.
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4. Numerical Results
4.1. Numerics
Both systems ((2) and (3)) of ODE are solved using the Matakime ode23tb. This routine
uses an implicit method with backward differentiation tdvecstiff differential equations.
Itis an implementation of TR-BDF2 (9), an implicit two stagange-Kutta formula where
the first stage is a trapezoidal rule step and the second istageackward differentiation
formula of order two.

Since both systems are boundary value problems, the shauntthod is used to solve
them.

4.2. Shooting Method
Now, we present the main steps of the shooting method in geety = (v, T, T, @). Then
one can write the system (2) in the following form

d 0
d—i = f(y7 U) 3 with Y1(O) = 1, y]_(l) = d, yS(O) = 1’ y4(0) — O, (4)
where T
3n
Re(%vr —Frt +clv%>
f(y7 U) = —C, (T—Tw) n AHgs g ,

W ToCp
_ 2
K (122) exp| —4In2 (TFm)’|

andd is given as follows:

Kl (1—¢@ T —Torax \
0= Ve <T> exp[—4|n2< 5 > ] .
Let us make an initial guesdor y,(0) and denote by(z; s), the solution of the initial value
problem

Yty withy(0)=1 %,(0) =S ¥:(0) = 1. ys(0) =O. )

Now we introduce a new dependent variable

0
X(zs) = a—z

and define the second system as follows

Ox = of X with  x;(0;8) =0, %(0;8) =1, X3(0;8) =0, X4(0;s) =0. (6)
0z oy

The solutiony(z s) of the initial value problem (5) coincides with the solutipfz) of the
boundary value state system (4) provided that the vattgs be found such that

¢(s) =y1(1;s) —d=0.
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Using the system (6}(s) can be computed as follows

¢'(s) =x(1;9).

Now, using Newton—iteration, a sequeris@nx is generated by

d(sn)
o'(sn)

If the initial guessy is a sufficiently good approximation to the required roap () = 0,
the theory of the Newton—iteration method ensures that dygience(s,)..n CcOnverges
to the roots. By rearranging the system (3), the functibfy, u) can be obtained for the
Maxwell-Oldroyd model.

Su1=S— for a given initial guess,.

4.3. Results

Figure 2 shows the spinline velocity, temperature profilg emystallinity index of the non-
Newtonian and Maxwell-Oldroyd models. Concerning the terafure profile, one sees
a jump in the temperature owing to the heat released due &tadligation. Further, the
behaviour of the temperature and crystallinity profiles@ose in both cases.
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Figure 2  Spinline velocity profile(up-left), spinline temperature (up-right) profile, Crystallinity index
(down-left).

Figure 3 shows the velocity profile of the Maxwell-Oldroyd deb depending on the
fluid shear modulus. From this one sees the the velocity profithe melt spinning process
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Figure 3  Velocity profile depending on fluid shear modulus (pa).

has no significant variation with respect to the fluid sheadwnhgs. But in the simulation
process we experienced difficulties when the fluid shear musdiecreased. We noticed
that it is needed to use higher initial guesses for the strasable for the lower value of
the fluid shear modulus. Figure 4 visualizes the final vejogstthe initial guess for stress
in different fluid shear modulus. One sees from this that feaudicular fluid shear modulus
value, the final velocity approaches a fixed value. For exanipive consideG =4 - 10*
pa, then the final velocity approaches 38 m/s. In other wandshis case (i.eG = 4- 10
pa) if we set the final velocity as 50 m/s then theoreticallyEodystem cannot be solved.
The fluid shear modulus is related to the characteristicxation time; lowerG yields
higherA. We can expect this behaviour since the Maxwell-Oldroyd eh@aithout the
crystallization process) has an upper bound for the fina-tgkvelocity which depends on
the characteristic relaxation time (see (7)). This meaasttte flow induced crystallization
Maxwell-Oldroyd model also has an upper bound for the finedtap velocity.

5. Conclusions

We compared the velocity, temperature and crystallizatidex profiles of the flow induced
crystallization melt spinning process using non-Newtordgad Maxwell-Oldroyd models.
The quantitative behaviour of the Maxwell-Oldroyd caseimsilar to the non-Newtonian
case. But the qualitative behavior of the Maxwell-Oldroyddal is totally different for
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Figure 4 Final velocity depending on the initial guesses for the stress.

the lower values of the fluid shear modulus. Using numericabkation, we have seen
that the flow induced crystallization Maxwell-Oldroyd médannot be solved with any
arbitrary final velocity; i.e., The flow induced crystalltzan Maxwell-Oldroyd model has
an upper bound for the final take-up velocity which dependshenmaterial properties
of the polymer. Theoretically, setting an arbitrary valoe fhe final velocity may yield
the spinning process unstable. Instability leads to ireagfibers or induces breakage of
the individual filaments of the spinline. Clearly, this istigation is important from an
industrial point of view.
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