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Abstract. Numerical solutions of some initial-boundary value problassociated with a particular
reaction-diffusion systems namely Gray-Scott model rasjide for spatial pattern formation are
considered. The aim of this paper is to numerically solve aheve system with coupled diffu-
sion terms. Firstly, using some linear transformationseraegal form of diffusion coupled reaction-
diffusion system is converted into reaction-diffusiontsys with uncoupled diffusion terms and then,
some finite difference schemes (based on (Hoff 1978)) arstearied to obtain the solutions. Finally,
the graphical representation of the numerical solutiorpagesented.
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1. Introduction

Properties of analytical solutions of diffusion-coupledction-diffusion systems have been
reported for instance in (Kirane 1989, Badraoui 2002, Ple€@P94, Kirane 1(1993). For
example consider the diffusion-coupled reaction-diffassystem

%:aAu—uh(v) xeQt>0, )
1
%/: bAu+ dAv+ uh(v) xe Q t >0,

with initial conditions
u(x,0) =Up(X),  V(X,0) =Vo(x),x€ Q )

on atE)ounded domai®2 C R" with Neumann boundary conditiony, > 0, a # d,
Uo

Vo > > 0, h(s) is a differentiable nonnegative function & The major result of this

has been regarded in (Kirane 1989) while the existence diadjksolutions for the system
(1) on unbounded domains has been reported in (Badraou) 2082 existence of global
solutions inR" for (1) with h(s) = v™ has been studied in (P. Collet 1994).

The quasilinear system of reaction-diffusion equations

P .(a(u)0u) — uh(u)v xeQt>0,
a )
— = O.(b(v)Ov) +uh(u)v—Avxe Q t >0,
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with initial conditions
U(X> O) = UO(X)v V(Xv 0) = VO(X)v xeQ (4)

and with Neumann or Dirichlet boundary conditions, is stddin (Kirane 1(1993) where
in particular, the existence of a globally bounded solutias been shown. Moreover, the
large time behavior of the solution has also been discussed.

This type of mathematical models may arise when constryctiathematical models for
the reaction-diffusion processes of substances (eg. dadsnspecies, deceases etc.) such
that diffusion of one substance depend on the diffusion nfesother substance appear in
precess.

The Turing instability condition which give rise to pattdanmation in reaction-diffusion
system are well known (Murray 2003). Some of such pattermmadtion reaction diffusion
systems are Gray-Scott model(Webpage ??7?7?a), FitzhughaiNamodel(Webpage ????b).
Many researchers have studied numerical solutions of gyetems without coupled diffu-
sion terms(Seaid 2001, Turk 1992, Grindrod 1991).

Above investigations of analytical solutions of diffusionupled reaction-diffusion sys-
tems and numerical solutions of pattern formation readfiffasion systems motivated us
to investigate numerical solutions of diffusion-coupledtprn formation reaction-diffusion
systems.

We aim in investigating numerical solutions of diffusiooupled pattern formation
reaction-diffusion systems using finite difference tegeis. The paper is organized as fol-
lows: In Section 2, we consider a general form of diffusianygled reaction-diffusion sys-
tem and its transformation into a reaction-diffusion sgsteith uncoupled diffusion terms.
In Section 3, some finite difference schemes are constrifmtedgeneral form of reaction-
diffusion system with uncoupled diffusion terms. In Sextiy numerical solutions, which
are obtained using constructed semi-implicit finite di#fece method, of Gray-Scott type
diffusion-coupled reaction diffusion system are presgriféhen semi-implicit finite differ-
ence scheme is applied to a reaction diffusion system, arsyst linear equations arise in
each time step. In order to solve these linear systems catgjtgradient method has been
used in computer programs.

2. General form of a diffusion-coupled reaction-diffusion system

Let vi(x,t), va(X,t) € R™ be variables explaining some characteristics of modeksyst
(eg. concentration, population size) in suitable unitsn€ider the following general form
of diffusion-coupled reaction-diffusion system:

ov;

— :AAV1+F(V1,V2), XGQ,t>0,
3, ()
E - BAV]_ + DAVZ + G(Vl,Vz), Xe Q, t > 0,

with initial conditions

va(X, 0) = Vvio(x) for xe Q } (6)

V2(X,0) = Vyo(X) for xeQ
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and boundary conditions

%:0, forxedQ, t > 0.

on

5 (7
ﬁ:O, forxedQ, t > 0.

on

HereF = (F,,F,...,Fn)T, G= (G, Gy, ...,Gn)T, Q C RYis a connected, bounded open set
with piecewise smooth boundary, ands the outward unit normal vector to the boundary.
A, B, andD are diagonal matrices of orderwhosei™ diagonal entries are respectively

b, andd, each of which is a real constants amg: d fori=1,2,...,m.

2.1. Transformation of a diffusion-coupled reaction-diffusion system to a
reaction-diffusion system with uncoupled diffusion terms
Let us define the Linear transformations

L: (v1,V2)— (V1,V2 — (A— D) 'Bvy) = (V,w).

UnderL, the system of equations (5) is transformed to

%:AAV+F1(V,W+(A—D)1Bv), XeQ, t>0,
0 ) (8)
E(W+ (A—D)'Bv) =BAv
+DA(W+ (A—D)'Bv)
+G; (v,w+ (A—D)'Bv),x€Q,t>0,

By simplifying have

‘;_‘t’ = ALV +F; (Vv,w+ (A—D) 'Bv), XeQ, t>0,

‘2_‘1" = —(A—D) '(BA—DB)AV + BAv ©
+DAW + Gy (V,w+ (A— D)*lBVP
—(A—D) 'BF (v,w+(A—D) 'Bv), xe Q, t >0,

This system can be written in the form:

g—\t/ = AAV + Fy(v,w), xeQ, t>0,

%—\iv = DAW + G,(v,w), xe Q, t >0,

(10)
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where

FZ(V7 W) = I:1 (V7W + (A_ D)ilBV) )
Go(v, W) = Gy (V,w+ (A— D)-1BV) (11)
—(A—D)™'BF, (v,w+ (A—D) 'Bv)
The initial conditions are reduced to:
V(X,0) =Vo(X) = Vi(x,0) = Vvyo(X), forxe Q
W(X,0) = Wo(X) = V(x,0) — (A— D)~'Bvy(x,0) (12)
- Vzo(X) - (A— D)ilBV]_()(X), fOI’ Xe Q

and boundary conditions are reduced to

a—V:O, forxeoQ, t > 0.
on

(13)
0

—Vr\]/:O, forxeoQ, t > 0.

— T —
Now takeu = (v,w)",C = 0D )’

andF = (F,(v,w), G,(v,w))". Then the system is reduced to the form:

0

a—ltJ:CAquF(u), XeQ, t>0, (14)
with initial data

u(x,0) =up(x) for xeQ

and boundary conditions

a—u:O for xeoQ t>0.
on

This system hasrAnumber of equations. The reaction-diffusion system (5hwitupled
diffusion terms is now reduced to the reaction-diffusiosteyn (14) which has no coupled
diffusion terms. This system can be solved numerically fapraximate solutions ofi =
(v,w)T. Finally, approximations fov; andv, can be obtained usirig* transformation.

3. Finite Difference Schemesfor reaction-diffusion systems

In this section finite difference schemes for reaction diffn system (14) are constructed
based on (Hoff 1978). Let= (X, %, ...,X) € RY, Ax, =h; (i=1,2,...,d) be an increment
inx (i=1,2,...,d) andt be an increment ih. Also letx, = (kihy, kohy, ..., kshy) for k=
(ky,Ka, ..., kg) € Z* andt, = nt for n € Z. We shall approximate(x,,t,) = U, for k € 1;
wherer is an appropriate index set containedzhsuch thak € Simpliesx, € Q.
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LetM =2m, S= I'l a;, b andY = {{Uy}ke; : Ux € RM} be a vector space @ valued

functions onS. Suppose that the second order accurate ope&'ﬁtonY are constructed
such that

AZU) 0%u
o ——<xk>\ <Cillullef, =1,2.....d
(5 20 i

<AJ2U> azu( ) f 0 i—12 d
- ) ==(n) forsomeneQ j=1,2, ..,
) 0

whereC, is a constant which is independentohndh;. Assuming that has been defined
and operator&f have been constructed, we replace the differential equétid) with the
finite difference equation

Un+1 Un d 2

_;hz (UM + (1—0)Uy) + (15)

WhereF is evaluated atx,t,,U7). Here 0< 8 < 1, andU" € Y is defined byU", =
U (X, t,) which is the corresponding finite difference approximatibn at the point(x, t,).
Letandp; =1/hf .

Then (15) may be written as:

( ez B,CA2>U"+1 <|+ (1-0) iBCAﬂ) U>+1F (16)

Applying initial and boundary conditions the operagjtl [3,»D(xk,t,Uk)A]2 can be decom-
posed. LelN be the cardinality of and define

F 1[0,00) x S'—Y by F (t,U) = F(X,t,Uy). Also let L : [0,00) x S*—Y andZ :
[0,00) x N—Y

be two mappings such thitis linear and

d
1= k
wheret > 0,U € S, andu €Y. Using these notations the difference scheme (16) can be
written in the following simple form:
(1 —0L)U™ =1 +(1-0)L)U"+Z +17. (18)

Wherel, Z and# are evaluated &t,,U").
When8 =0 in (18) we get

Ut =1 +LWU"+Z+17.

Sincel, Z, andF are evaluated at time level,U-values at(n+1)th time level can be
evaluated explicitly by above equation. These types ofdfidifference schemes are called
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fully explicit schemes.
When6 #£ 0 in (18)U-values atn+ 1)th time level are expressed implicitly bhy-value at
nth time level. These types of finite difference schemes dteccemplicit schemes. When
0 =1/2 the scheme is called the Crank-Nicolsion finite differesdeeme. The cade=1
is called semi-implicit scheme. This semi-implicit scheisiased in numerical simulations
of this paper. In the following example the finite differereheme is implemented on a
domain in two dimensional space.

ExampLE 1. Consider two dimensional case with= (a;,b;) x (a, b,). Let

1={@,]) ;(i=12,..,N), (j=1,2,..Np)},

whereN; andN, are such thatN; + 1)h; = b; — a;, (N, + 1)h, = b, — &, and usual second
order approximation for the Laplacian operator. Then

A
A
0= + 21
N2><N2
and
A By
B. A By
po| o t 2z
B, A By
Bl Al N2><N2
where
=21 |
I -2 1
A: .'. )
I -2 1
I o N1><N1
=2
-2l
Ali . ]
-2
_2I N1><N1
|
I
B, = ,

N1><N1
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herel is anM x M identity matrix.z, = (211, Z12, ..., Z1n,) "
andZZ — (ZZ,l) Z2_2, ceey ZZ,NZ)T-
In the abovezy; = (1,0,...,0,1)] , fori=1,2,...,N,

(L,1,...,1, )], ifi=1,N,
i = 1><N1
2i (0,0,...,0,0)],,, otherwise.

¢, From the equation (17) we get
Lu + Z = (B,DAZ + 3,DA3)u

That is we get

L11... L,
L(t,U)= :
LNll e LNlNl Ny x Ny
where
0 otherwise
Also

Z =[1Dz1+ B,D2z,.

4. Numerical Experiments
In this section we consider pattern formation of diffusiaupled Gray-Scott model. The
Gray-Scott model includes the following two irreversibdactions:

U+2v — 3V

V—P

whereU andV are two reacting specimens aRdan inert precipitate. The mathematical
model for this reaction-diffusion process is of the form:

u_ dhAu+uv— (n+Qu
& (19)
— = AV - U+ n(1-V).
ot
whereu andv are the concentrations bf andV respectively and,; andd, are their respec-
tive diffusion coefficientsn and{ are dimensionless feed rates of first and second reaction
respectively (Webpage ??7?77a).
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Vattimet=0 V at time t= 3000

0.1 0.1

0.05{" 0.054"

—o
o

Figure 1  Time evolution of V: Surface plots of V at different time levels

4.1. Gray-Scott model with coupled diffusion terms
We consider the following diffusion-coupled Gray-Scottaeb

u_ dAu+uv— (n+Qu
o (20)
= dAU+ dyAV — UV 41 (1 - V)
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V at time t= 24000 V at time t= 27000

Figure 2  Time evolution of V: Surface plots of V at different time levels

Heren, ¢, d, d; andd, are constants ard # d,.

We consider this reaction-diffusion system on the boundedain|0, 1] x [0, 1] under no
flux boundary conditions and under the parametkrs 1.0 x 1077, d, =8 x 1076, d =
2.5x 1075, ¢ =0.005,n = 0.0006. In this case initial conditions are:

u(x,y,0) = 0.101215; (x,y)€(0,1) x (0,1) 21
v(X,Y,0) = Vo + (rand 200) /1000000)vy; (x,Y) € [0,1] x [0,1]; } (21)

wherev, = 0.055328.
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Figure 3  Time evolution of V: Density plots of V at different time levels

It can be shown that above initial state and parameterdystitesTuring instability condi-
tions which are the conditions should satisfy by reactidfusion systems in order to form
spatial patterns(Murray 2003, Turing 1952). Numericaliiohs of the reaction-diffusion
system (20) subjectto no-flux boundary conditions undéiairdata (21) are obtained using
above introduced semi-implicit finite difference schemarf&ce plots of the-component
at different time levels of those numerical solutions amghin Figures 1 and 2/ denotes
the numerical solutions of). Density plots of the same are shown in Figures 3 and 4.
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V at time t= 24000 V at time t= 27000
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Figure 4  Time evolution of V: Density plots of V at different time levels

According to these density plots it can be seen that thesgi@a$ form some spatial
patterns.

5. Discussion

The constructed implicit Finite Difference scheme can lbedly applied to solve the trans-
formed (system with coupled diffusion terms to system withcoupled diffusion terms)
reaction diffusion system. After that, the solutions of theipled-reaction diffusion system
are obtained by applying inverse of the transformation.
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However when transforming a diffusion-coupled reactidfudion system to a reaction-
diffusion system with uncoupled diffusion terms the reattierms become more compli-
cated. This may affect to convergence of the finite diffeeescheme. In order to get rid
of this problem step sizes of time have to be shorter. Agam ity cause to increase
computational errors and computational time. It is expgtieestimate and compare com-
putational errors and computational time of these two neshio my future work.
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