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Abstract. Numerical solutions of some initial-boundary value problem associated with a particular
reaction-diffusion systems namely Gray-Scott model responsible for spatial pattern formation are
considered. The aim of this paper is to numerically solve theabove system with coupled diffu-
sion terms. Firstly, using some linear transformations, a general form of diffusion coupled reaction-
diffusion system is converted into reaction-diffusion system with uncoupled diffusion terms and then,
some finite difference schemes (based on (Hoff 1978)) are constructed to obtain the solutions. Finally,
the graphical representation of the numerical solutions are presented.
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1. Introduction
Properties of analytical solutions of diffusion-coupled reaction-diffusion systems have been
reported for instance in (Kirane 1989, Badraoui 2002, P. Collet 1994, Kirane 1(1993). For
example consider the diffusion-coupled reaction-diffusion system

∂u
∂t

= a∆u− uh(v) x ∈ Ω t > 0,

∂v
∂t

= b∆u + d∆v + uh(v) x ∈ Ω t > 0,











(1)

with initial conditions

u(x,0) = u0(x), v(x,0) = v0(x), x∈ Ω (2)

on a bounded domainΩ ⊂ R
n with Neumann boundary conditions,b > 0, a 6= d,

v0 ≥
bu0

a− d
≥ 0, h(s) is a differentiable nonnegative function onR. The major result of this

has been regarded in (Kirane 1989) while the existence of global solutions for the system
(1) on unbounded domains has been reported in (Badraoui 2002). The existence of global
solutions inR

n for (1) with h(s) = vm has been studied in (P. Collet 1994).
The quasilinear system of reaction-diffusion equations

∂u
∂t

= ∇.(a(u)∇u)− uh(u)v x ∈ Ω t > 0,

∂v
∂t

= ∇.(b(v)∇v) + uh(u)v−λv x ∈ Ω t > 0,











(3)

1
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with initial conditions

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ Ω (4)

and with Neumann or Dirichlet boundary conditions, is studied in (Kirane 1(1993) where
in particular, the existence of a globally bounded solutionhas been shown. Moreover, the
large time behavior of the solution has also been discussed.

This type of mathematical models may arise when constructing mathematical models for
the reaction-diffusion processes of substances (eg. chemicals, species, deceases etc.) such
that diffusion of one substance depend on the diffusion of some other substance appear in
precess.

The Turing instability condition which give rise to patternformation in reaction-diffusion
system are well known (Murray 2003). Some of such patterns formation reaction diffusion
systems are Gray-Scott model(Webpage ????a), Fitzhugh-Nagumo model(Webpage ????b).
Many researchers have studied numerical solutions of thesesystems without coupled diffu-
sion terms(Seaid 2001, Turk 1992, Grindrod 1991).

Above investigations of analytical solutions of diffusion-coupled reaction-diffusion sys-
tems and numerical solutions of pattern formation reactiondiffusion systems motivated us
to investigate numerical solutions of diffusion-coupled pattern formation reaction-diffusion
systems.

We aim in investigating numerical solutions of diffusion-coupled pattern formation
reaction-diffusion systems using finite difference techniques. The paper is organized as fol-
lows: In Section 2, we consider a general form of diffusion-coupled reaction-diffusion sys-
tem and its transformation into a reaction-diffusion system with uncoupled diffusion terms.
In Section 3, some finite difference schemes are constructedfor a general form of reaction-
diffusion system with uncoupled diffusion terms. In Section 4, numerical solutions, which
are obtained using constructed semi-implicit finite difference method, of Gray-Scott type
diffusion-coupled reaction diffusion system are presented. When semi-implicit finite differ-
ence scheme is applied to a reaction diffusion system, a system of linear equations arise in
each time step. In order to solve these linear systems conjugate-gradient method has been
used in computer programs.

2. General form of a diffusion-coupled reaction-diffusion system
Let v1(x, t), v2(x, t) ∈ R

m be variables explaining some characteristics of model system
(eg. concentration, population size) in suitable units. Consider the following general form
of diffusion-coupled reaction-diffusion system:

∂v1

∂t
= A∆v1 + F(v1,v2), x ∈ Ω, t > 0,

∂v2

∂t
= B∆v1 + D∆v2 + G(v1,v2), x ∈ Ω, t > 0,











(5)

with initial conditions
v1(x,0) = v10(x) for x ∈ Ω
v2(x,0) = v20(x) for x ∈ Ω

}

(6)
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and boundary conditions

∂v1

∂n
= 0, for x ∈ ∂Ω, t > 0.

∂v2

∂n
= 0, for x ∈ ∂Ω, t > 0.



















(7)

HereF = (F1,F2, ...,Fm)T , G = (G1,G2, ...,Gm)T , Ω ⊂R
d is a connected, bounded open set

with piecewise smooth boundary, andn is the outward unit normal vector to the boundary.
A, B, andD are diagonal matrices of orderm whoseith diagonal entries are respectivelyai,
bi, anddi each of which is a real constants andai 6= di for i = 1,2, ...,m.

2.1. Transformation of a diffusion-coupled reaction-diffusion system to a
reaction-diffusion system with uncoupled diffusion terms

Let us define the Linear transformations

L : (v1,v2)−→
(

v1,v2 − (A−D)−1Bv1

)

= (v,w).

UnderL, the system of equations (5) is transformed to

∂v
∂t

= A∆v + F1

(

v,w +(A−D)−1Bv
)

, x ∈ Ω, t > 0,

∂
∂t

(w +(A−D)−1Bv) = B∆v

+D∆(w +(A−D)−1Bv)
+G1 (v,w +(A−D)−1Bv) , x ∈ Ω, t > 0,



































(8)

By simplifying have

∂v
∂t

= A∆v + F1

(

v,w +(A−D)−1Bv
)

, x ∈ Ω, t > 0,

∂w
∂t

= −(A−D)−1(BA−DB)∆v + B∆v

+D∆w + G1

(

v,w +(A−D)−1Bv
)

−(A−D)−1BF1

(

v,w +(A−D)−1Bv
)

, x ∈ Ω, t > 0,



































(9)

This system can be written in the form:

∂v
∂t

= A∆v + F2(v,w), x ∈Ω, t > 0,

∂w
∂t

= D∆w + G2(v,w), x ∈Ω, t > 0,



















(10)
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where

F2(v,w) = F1 (v,w +(A−D)−1Bv) ,

G2(v,w) = G1 (v,w +(A−D)−1Bv)
−(A−D)−1BF1 (v,w +(A−D)−1Bv)















(11)

The initial conditions are reduced to:

v(x,0) = v0(x) = v1(x,0) = v10(x), for x ∈Ω

w(x,0) = w0(x) = v2(x,0)− (A−D)−1Bv1(x,0)
= v20(x)− (A−D)−1Bv10(x), for x ∈Ω















(12)

and boundary conditions are reduced to

∂v
∂n

= 0, for x ∈ ∂Ω, t > 0.

∂w
∂n

= 0, for x ∈ ∂Ω, t > 0.



















(13)

Now takeu = (v,w)T , C =

(

A 0
0 D

)

,

andF = (F2(v,w),G2(v,w))
T . Then the system is reduced to the form:

∂u
∂t

=C∆u + F(u), x ∈Ω, t > 0, (14)

with initial data
u(x,0) = u0(x) for x ∈Ω

and boundary conditions
∂u
∂n

= 0 for x ∈ ∂Ω t > 0.

This system has 2m number of equations. The reaction-diffusion system (5) with coupled
diffusion terms is now reduced to the reaction-diffusion system (14) which has no coupled
diffusion terms. This system can be solved numerically for approximate solutions ofu =
(v,w)T . Finally, approximations forv1 andv2 can be obtained usingL−1 transformation.

3. Finite Difference Schemes for reaction-diffusion systems
In this section finite difference schemes for reaction diffusion system (14) are constructed
based on (Hoff 1978). Letx = (x1, x2, ..., xd)∈R

d, ∆xi = hi (i = 1,2, ...,d) be an increment
in xi (i = 1,2, ...,d) andτ be an increment int. Also let xk = (k1h1, k2h2, ..., kdhd) for k =
(k1, k2, ..., kd) ∈ Z

d andtn = nτ for n ∈ Z. We shall approximateu(xk, tn) ≡ U n
k for k ∈ I ;

whereI is an appropriate index set contained inZ
d such thatk ∈ S impliesxk ∈ Ω.
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Let M = 2m, S =
d

∏
i=1

[ai,bi] andY = {{Uk}k∈I : Uk ∈R
M} be a vector space ofRM valued

functions onS. Suppose that the second order accurate operator∆2
j on Y are constructed

such that
∣

∣

∣

∣

(∆2
ju

h2
j

)

k

−
∂2u
∂x2

j

(xk)

∣

∣

∣

∣

∞

≤C1||u||4h2
j, j = 1,2, ...,d

(∆2
ju

h2
j

)

k

=
∂2u
∂x2

j

(η) for some η ∈ Ω j = 1,2, ...,d

whereC1 is a constant which is independent ofu andh j. Assuming thatI has been defined
and operators∆2

j have been constructed, we replace the differential equation (14) with the
finite difference equation

U n+1
k −U n

k

τ
=

d

∑
j=0

∆2
j

h2
j

(

θU n+1
k +(1− θ)U n

k

)

+ F (15)

WhereF is evaluated at(xk, tn,U n
k ). Here 0≤ θ ≤ 1, andU n ∈ Y is defined byU n

k =
U(xk, tn) which is the corresponding finite difference approximationof u at the point(xk, tn).
Let andβ j = τ/h2

j .
Then (15) may be written as:

(

I − θ
d

∑
j=1

(β jC∆2
j)

)

U n+1
k =

(

I +(1− θ)
d

∑
j=1

β jC∆2
j

)

U n
k + τF (16)

Applying initial and boundary conditions the operator∑d
j=1 β jD(xk, t,Uk)∆2

j can be decom-
posed. LetN be the cardinality ofI and define
F : [0,∞) × SN−→Y by F (t,U)k = F(xk, t,Uk). Also let L : [0,∞) × SN−→Y and Z :
[0,∞)× SN−→Y
be two mappings such thatL is linear and

[L(t,U)u + Z(t,U)]k =

{

d

∑
j=1

[

β jC∆2
j

]

u

}

k

, (17)

wheret ≥ 0, U ∈ SN, andu ∈ Y . Using these notations the difference scheme (16) can be
written in the following simple form:

(I − θL)U n+1 = (I +(1− θ)L)U n + Z + τF . (18)

WhereL, Z andF are evaluated at(tn,U n).
Whenθ = 0 in (18) we get

U n+1 = (I + L)U n + Z + τF .

SinceL, Z, andF are evaluated atnth time level,U-values at(n+1)th time level can be
evaluated explicitly by above equation. These types of finite difference schemes are called
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fully explicit schemes.
Whenθ 6= 0 in (18)U-values at(n + 1)

th time level are expressed implicitly byU-value at
nth time level. These types of finite difference schemes are called implicit schemes. When
θ = 1/2 the scheme is called the Crank-Nicolsion finite differencescheme. The caseθ = 1
is called semi-implicit scheme. This semi-implicit schemeis used in numerical simulations
of this paper. In the following example the finite differencescheme is implemented on a
domain in two dimensional space.

EXAMPLE 1. Consider two dimensional case withΩ = (a1,b1)× (a2,b2). Let

I = {(i, j) ; (i = 1,2, ...,N1), ( j = 1,2, ...N2)},

whereN1 andN2 are such that(N1 + 1)h1 = b1− a1, (N2 + 1)h2 = b2 − a2 and usual second
order approximation for the Laplacian operator. Then

∆2
2 =











A
A

. . .
A











N2×N2

+Z 1

and

∆2
1 =















A1 B1

B1 A1 B1

. . . . . . . . .
B1 A1 B1

B1 A1















N2×N2

+Z 2;

where

A =















−2I I
I −2I I

. . . .. . . . .
I −2I I

I −2I















N1×N1

,

A1 =















−2I
−2I

. . .
−2I

−2I















N1×N1

,

B1 =















I
I

. . .
I

I















N1×N1

;
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hereI is anM ×M identity matrix.Z 1 = (Z 1,1,Z 1,2, ...,Z 1,N2)
T

andZ 2 = (Z 2,1,Z 2,2, ...,Z 2,N2)
T .

In the aboveZ 1i = (1,0, ...,0,1)T
1×N1

for i = 1,2, ...,N2

Z 2,i =

{

(1,1, ...,1,1)T
1×N1

if i = 1,N2

(0,0, ...,0,0)T
1×N1

otherwise.

¿From the equation (17) we get

Lu + Z = (β1D∆2
1 + β2D∆2

2)u

That is we get

L(t,U) =







L11 . . . L1N1
...

...
LN11 . . . LN1N1







N2×N2

where

Li j =







β1DA1 + β1DB1 + β2DA if i = j
β1DB1 if i = j ±1
0 otherwise

Also

Z = β1DZ 1 + β2DZ 2.

4. Numerical Experiments
In this section we consider pattern formation of diffusion coupled Gray-Scott model. The
Gray-Scott model includes the following two irreversible reactions:

U + 2V −→ 3V

V −→ P

whereU andV are two reacting specimens andP an inert precipitate. The mathematical
model for this reaction-diffusion process is of the form:

∂u
∂t

= d1∆u + u2v− (η + ζ)u

∂v
∂t

= d2∆v− u2v + η(1− v).











(19)

whereu andv are the concentrations ofU andV respectively andd1 andd2 are their respec-
tive diffusion coefficients.η andζ are dimensionless feed rates of first and second reaction
respectively (Webpage ????a).
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Figure 1 Time evolution of V : Surface plots of V at different time levels

4.1. Gray-Scott model with coupled diffusion terms
We consider the following diffusion-coupled Gray-Scott model:

∂u
∂t

= d1∆u + u2v− (η + ζ)u

∂v
∂t

= d∆u + d2∆v− u2v + η(1− v)











(20)
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Figure 2 Time evolution of V : Surface plots of V at different time levels

Hereη, ζ, d, d1 andd2 are constants andd1 6= d2.
We consider this reaction-diffusion system on the bounded domain[0,1]× [0,1] under no
flux boundary conditions and under the parametersd1 = 1.0× 10−7, d2 = 8× 10−6, d =
2.5×10−6, ζ = 0.005,η = 0.0006. In this case initial conditions are:

u(x, y,0) = 0.101215; (x, y)∈ (0,1)× (0,1)
v(x, y,0) = v0 +(rand(200)/100000.0)v0; (x, y)∈ [0,1]× [0,1];

}

(21)

wherev0 = 0.055328.
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Figure 3 Time evolution of V : Density plots of V at different time levels

It can be shown that above initial state and parameters satisfy the Turing instability condi-
tions which are the conditions should satisfy by reaction diffusion systems in order to form
spatial patterns(Murray 2003, Turing 1952). Numerical solutions of the reaction-diffusion
system (20) subject to no-flux boundary conditions under initial data (21) are obtained using
above introduced semi-implicit finite difference scheme. Surface plots of thev-component
at different time levels of those numerical solutions are shown in Figures 1 and 2 (V denotes
the numerical solutions ofv). Density plots of the same are shown in Figures 3 and 4.
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Figure 4 Time evolution of V : Density plots of V at different time levels

According to these density plots it can be seen that these solutions form some spatial
patterns.

5. Discussion
The constructed implicit Finite Difference scheme can be directly applied to solve the trans-
formed (system with coupled diffusion terms to system without coupled diffusion terms)
reaction diffusion system. After that, the solutions of thecoupled-reaction diffusion system
are obtained by applying inverse of the transformation.
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However when transforming a diffusion-coupled reaction diffusion system to a reaction-
diffusion system with uncoupled diffusion terms the reaction terms become more compli-
cated. This may affect to convergence of the finite difference scheme. In order to get rid
of this problem step sizes of time have to be shorter. Again this may cause to increase
computational errors and computational time. It is expected to estimate and compare com-
putational errors and computational time of these two methods in my future work.

References
Badraoui, S. 2002. Existence of global solution for systemsof reaction-diffusion equations on

unbounded domain.Electronic Journal of Differential Equations 2002(2002) 1–10.

Grindrod, P. 1991.Patterns and Waves- The theory and applications of Reaction-Diffusion equa-
tions. Oxford Applied Mathematics and computing Science Series,Oxford.

Hoff, David. 1978. Stability and convergence of finite difference methods for systems of nonlinear
reaction-diffusioon equations.SIAM J. NUMER. ANAL. 15 1161–1177.

Kirane, M. 1(1993). Global pointwise a priori bounds and large time behavior for a nonlinear system
describing the spread of infectious disease.Applicationes Mathematicae 1–9.

Kirane, M. 1989. Global bounds and asymptotics for a system of reaction-diffusion equations.
Journal of Mathematical Analysis and Applications 138 328–342.

Murray, J.D. 2003. Mathematical Biology: Spatial models and biomedical applications, vol. II.
Springer-Verlag Berlin Heidelberg.

P. Collet, J. Xin. 1994. Global existence and large time asymptotic bounds ofl∞ solutions of thermal
diffusive combustion systems onRn. arXiv:chao-dyn/9412003 5.

Seaid, M. 2001. Implicit-explicit approach for coupled systems of nonlineat reaction-diffusion equa-
tions in pattern formation.Science Letters 3.

Turing, A. M. 1952. The chemical basis of morphogenesis.Philosophical Transactions of the Royal
Society of London 237 37–72.

Turk, G. 1992. Texturing surfaces using reaction-diffusion. Phd theses, University of North Carolina,
Chapel Hill.

Webpage. ????a. http://www-swiss.ai.mit.edu/projects/amorphous/grayscott/.

Webpage. ????b. http://www.scholarpedia.org/article/fitzhugh-nagumo−model.


